Non-pharmacological and non-surgical interventions for knee osteoarthritis: a systematic review and meta-analysis

Ferreira RM^{1,2}, Torres RT³, Duarte JA², Gonçalves RS^{4,5}

ACTA REUMATOL PORT. 2019;44:173-217

ABSTRACT

Objective: The aim of the present systematic review and meta-analysis is to know, based on the available randomized controlled trials (RCTs), if the non-surgical and non-pharmacological interventions commonly used for knee osteoarthritis (OA) patients are effective and which are the most effective ones.

Material and Methods: RCTs were identified through electronic databases respecting the following terms to guide the search strategy: PICO (Patients – Humans with knee OA; Intervention – Non-surgical and non-pharmacological interventions; Comparison – Pharmacological, surgical, placebo, no intervention, or other non-pharmacological/non-surgical interventions; Outcomes – Pain, physical function and patient global assessment). The methodological quality of the selected publications was evaluated using the PEDro and GRADE scales. Additionally, a meta-analysis was performed using the RevMan. Only studies with similar control group, population characteristics, outcomes, instruments and follow-up, were compared in each analysis.

Results: Initially, 52 RCTs emerge however, after methodological analysis, only 39 had sufficient quality to be included. From those, only 5 studies meet the meta-analysis criteria. Exercise (especially resistance training) had the best positive effects on knee OA patients. Pulsed Electromagnetic Fields and Moxibustion showed to be the most promising interventions from the others. Balance Training, Diet, Diathermy, Hydrotherapy, High Level Laser Therapy, Interferential Current, Mudpack, Neuromuscular Electrical Stimula-

tion, Musculoskeletal Manipulations, Shock Wave Therapy, Focal Muscle Vibration, stood out, however more studies are needed to fully recommend their use. Other interventions did not show to be effective or the results obtained were heterogeneous.

Conclusions: Exercise is the best intervention for knee OA patients. Pulsed Electromagnetic Fields and Moxibustion showed to be the most promising interventions from the others options available.

Keywords: Knee osteoarthritis; Non-surgical; Non-pharmacological; Interventions

INTRODUCTION

Osteoarthritis (OA) is the most common form of arthritis and is a major contributor to functional and social impairment, disability, reduced independence and poorer quality-of-life in older adults¹⁻⁷. There are at least 151,4 million persons worldwide suffering from this disease⁸. Yet, in nowadays these values are for sure higher, since the incidence of new cases is 200–250/ /100 000/year⁹. Moreover, there is an increasing need for urgent attention to this disease due to the societal trends in the population such as ageing, obesity prevalence and joint injury, estimating that the number of people affected by OA will increase about 50% over the next 20 years^{5,10,11}.

From all joint that can be affected by OA, the knee is the most prevalent (especially in elderly women), where a third of older adults in the general population shows radiological evidence of knee OA¹¹⁻¹⁶. Current OA rehabilitation strategy is a complex process that uses surgical and non-surgical interventions (pharmacological and non-pharmacological)^{5,9,14,17-20}. As the majority of the non-pharmacological and non-surgical interventions are safe, low cost, low tech, incorporate self-management performed at home or in the com-

^{1.} Physical Education and Sports Department, N2i, Institute Polytechnic of Maia

^{2.} Faculty of Sport, CIAFEL, University of Porto

^{3.} CESPU, North Institute Polytechnic of Health

^{4.} Coimbra Health School, Physical Therapy Department,

Polytechnic Institute of Coimbra

^{5.} Centre for Health Studies and Research, University of Coimbra

munity and have a substantial public health impact, they play a critical role in the patients' life as they are nowadays the first step in the knee OA management^{5,9,14,17-20}. Due to their risks, complications and post-outcomes other strategies are a valid option for patients who failed to respond to these measures^{5,14,17,19,20}.

Although there are several studies, recommendations and guidelines for knee OA management, there is still poor adherence to these interventions by the patients and even by the health professionals. Due to this poor adherence, wide range of treatments and even uncertainty in some therapies, further research seems necessary to clarify which ones are the most efficient evidence-based non-pharmacological and non-surgical treatments to manage knee OA.

Therefore, the aim of the present systematic review and meta-analysis is to find out, based on the available randomized controlled trials, if the non-surgical and non-pharmacological interventions commonly used for knee OA patients are effective and which are the most effective ones.

MATERIAL AND METHODS

DATA SOURCES AND SEARCH

This systematic review was conducted following the PRISMA (*Preferred Reporting Items for Systematic reviews and Meta-Analyses*) guidelines²¹. Systematic and comprehensive searches were conducted in electronic databases: MEDLINE, Embase, Physiotherapy Evidence Database (PEDro), The Cochrane Library, Sci-ELo, Science Direct, Google Scholar, Research Gate and B-ON. Only English papers were accepted and excluded if duplicated. The search period ran from September 2018 to October 2018.

The studies selection followed the PICO model (*Pa*tients – Humans with knee OA; Intervention – Nonsurgical and non-pharmacological interventions; Comparison – Pharmacological, surgical, placebo, no intervention, or other non-pharmacological/non-surgical interventions; Outcomes – Pain, physical function and patient global assessment).

The keywords used to search in all databases were identified after preliminary literature searches and by crosschecking them against previous recent and relevant systematic reviews and umbrella reviews²². An example of an online search strategy draft used in MEDLINE database is presented in Figure 1.

#1 "Knee*" "Osteoarthr*" OR "Gonarthr*"

#2 elder* OR older* OR oldest OR aged

#3 "Humans"[Mesh]

#4 #2 OR #3

#5 ("Exercise"[Mesh] OR "Low-Level Light Therapy"[Mesh] OR "Transcutaneous Electric Nerve Stimulation"[Mesh] OR "Acupuncture Therapy"[Mesh] OR "Yoga"[Mesh] OR "Tai Ji"[Mesh] OR "Moxibustion"[Mesh] OR "Electroacupuncture"[Mesh] OR "Ultrasound Therapy"[Mesh] OR "Musculoskeletal Manipulations"[Mesh] OR "Electric Stimulation Therapy"[Mesh])

#6 "Treatment"" OR "Therap"" OR "Non-pharmacologic" OR "Non-surgic" OR "Conservativ" OR "Rehab" OR "Physit" OR "Manag"

#7 #5 OR #6

#8 (randomized OR randomised OR controlled OR double-blind OR rct)

#9 ((((("Randomized Controlled Trial" [Publication Type] OR "Controlled Clinical Trial" [Publication Type] OR "Randomized Controlled Trials as Topic"[Mesh]) OR "Controlled Clinical Trials as Topic"[Mesh]) OR "Random Allocation"[Mesh]) OR "Double-Bind Method"[Mesh]) OR "Single-Bind Method"[Mesh]) OR ("Clinical Trial" [Publication Type] OR "Clinical Trials as Topic"[Mesh])

#10 #8 OR #9

#11 "2012/01/01" [Pdat] : "2018/09/29"[Pdat]

#12 English[lang]

#13 #1 AND #4 AND #7 AND #10 AND #11 AND #12

FIGURE 1. Description of an example of online search strategy

Additional publications that were not found during the original database search were identified through manual searches in related articles and reviews reference lists.

STUDY SELECTION

In this study, two independent reviewers screened the titles and abstracts yielded by the search against the inclusion and exclusion criteria and performed the selection of the potential studies. In case of study selection disparities, the reviewers reached an agreement through verbal discussion or arbitration. Full versions for all titles that appeared to meet the inclusion criteria were achieved and then the full text versions were screened by the inclusion criteria. When insufficient data was presented, the corresponding authors were contacted by email in order to request further details. The inclusion and exclusion criteria applied to this review are described in Table I.

DATA EXTRACTION AND QUALITY ASSESSMENT

The data extracted from the selected publications to assess the effects of non-pharmacological and non-surgical interventions included²³: authors' name, year of publication, study location, participants' sample size and their characteristics, objectives, description of the in-

Inclusion	Exclusion
The articles must include:	The articles cannot include:
• at least one of the keywords;	• an experimental or control group composed by any
• an intervention group that have primary knee OA either	specie of animal;
clinical or radiological criteria (or both);	• participants that do not have a knee OA (healthy
 randomized controlled trials (RCT); 	subjects) or have secondary knee OA (traumatic or
 non-pharmacological and non-surgical intervention; 	post-surgical);
 peer-reviewed scientific literature journals; 	• RCTs prior to 2012;
• pain, physical function and patient global assessment;	• exclusively pharmacological or surgical interventions;
 detailed description of the non-pharmacological 	• books, reviews, meta-analyses, case reports, expert
and non-surgical intervention;	opinions, conference papers or academic thesis;
• full version, in English;	• subjects with other illness namely cancer, heart diseases
• studies that perform a patient global assessment using	kidney diseases, neurological diseases, respiratory
the Western Ontario and McMaster Universities	diseases, rheumatoid arthritis, gouty arthritis, septic
Osteoarthritis (WOMAC) or Knee injury and	arthritis or Paget's disease;
Osteoarthritis Outcome Score (KOOS) indexes.	• exclusively subjects with OA in the hip, foot,
	shoulder, elbow, wrist and fingers.

TABLE I. INCLUSION AND EXCLUSION CRITERIA

tervention, description of the control group, study outcomes, assessment times, study results and study conclusions. Furthermore, considering the broad scope of clinical conditions, it was decided to restrict the work to pain, physical function and patient global assessment²⁴.

The reviewers independently scored the methodological quality of the studies by using a validated score, the PEDro 11-items scale²⁵⁻³³. For this review only ratings of at least 6/10 on the PEDro scale were included in the analysis, consistent with previous systematic reviews^{28,29,35,36}. Furthermore, principles from GRADE were used for an overall assessment and integration of the strength of the evidence for each intervention³⁷.

DATA SYNTHESIS AND ANALYSIS

To measure the effect magnitude of the different interventions on knee OA patients, the RevMan (Review Manager version 5.3, The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, 2014) was used to perform the meta-analysis and present the results. In relation to the meta-analysis, only studies with similar control group (sham intervention, waiting list, no intervention, daily life activities or not aware of the study), population characteristics, outcomes, instruments and follow-up, were compared in each analysis.

For the continuous outcomes, Standardized Mean Differences (SMDs) and 95% Confidence Intervals (95% CIs) were used to weigh the Effect Size (ES). The

ES is used to determine the degree of improvement of a specific intervention after accounting for any placebo effect. In our study, a negative ES favored the intervention and consequently a positive ES the control. Moreover, according to Cohen's characteristics, each ES was interpreted as 0.2 (small), 0.5 (medium), and 0.8 (large)³⁸.

The continuous outcomes were calculated with the random-effects model using the inverse variance method. Study heterogeneity was estimated through the Higgins I^2 statistic test, subsequent x^2 , and Cochran Q test, in accordance with the values of I^2 and P. Heterogeneity was interpreted by guidelines from the Cochrane Collaboration, in which, 25%, 50%, and 75% represent low, moderate and high heterogeneity, respectively³⁹.

RESULTS

SELECTION OF THE STUDIES

A set of 22180 records were identified through database searching. After the application of the inclusion and exclusion criteria, 52 articles have emerged. The diagram in Figure 2 summarizes the selection process.

METHODOLOGICAL QUALITY

After the selection of the studies, the reviewers inde-

FIGURE 2. Results of the application of the inclusion and exclusion criteria.

Abbreviations: WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index; KOOS, Knee injury and Osteoarthritis Outcome Score.

pendently applied the PEDro scale to evaluate the methodological quality of the 52 selected papers ⁴⁰⁻⁹¹. After this process, they reached an agreement through verbal discussion or arbitration. The percentage of agreement for individual items ranged from 36.36% to 100%. The methodological quality assessment using the PEDro scale revealed a mean score of 6.69 (range $3^{79} - 10^{91}$). After the exclusion of 13 studies^{42,44,46,51,53,56,63,64,73,79,80,83,90} (as they did not reach a minimum of 6/10), the mean score raised to 7.38. The classifications obtained are described in Table II.

STUDY CHARACTERISTICS

Overall, the 39 included studies^{40,41,43,45,47-50,52,54,55,57-62,65-72,74-78,81,82,84-89,91} were published from 2012^{41,45,58,62,66,74,81,86} to 2018^{60,76,84} and conducted in America (Brazil^{41,59,61,65,69,74,75,84,87} and United States of America^{54,55,60,89}), Asia (China⁹¹, India⁶², Saudi Arabia^{43,70}, South Korea⁷¹ and Turkey^{45,47,52,66,76,77,86}), Europe (Denmark^{57,67}, England⁷⁸, Finland⁸⁸, Hungary⁸⁵, Italy^{48,81,82} and Nederland⁷²) and Oceania (Australia^{49,50,58,68} and New Zealand⁴⁰).

The total number of enrolled subjects was 3907 with an average of 99±69 (maximum=282⁶⁸, mini-

mum=30⁶⁰) and a mean age of 62.7 ± 5 (maximum=74.4⁸², minimum=51.9⁴⁷) years per study. Also the follow-up period time was 20 ± 17 (maximum= 68^{40} , minimum= $3^{47,86,87}$) weeks per study.

The average weight and height of all subjects were 79±8.8 (maximum=103.2⁵⁷, minimum=65⁹¹) kilograms and 1.63±0.06 (maximum=1.73⁷⁰, minimum=1.54⁷⁴) meters respectively, with a mean BMI of 29.4±2.6 (maximum=37.3⁵⁷, minimum=23.9⁶⁵) kg/m². More females were enrolled in the studies, specifically the number of females per study were 77±49 (maximum=179⁷¹, minimum=0⁷⁰), reaching a mean percentage of 72.8±18.7 (maximum=100^{69,88}, minimum=0⁷⁰). Regarding the male gender the number of subjects per study were 32±32 (maximum=143⁶⁸, minimum=0^{69,88}) with a percentage of 27.7±18.5 (maximum=100⁷⁰, minimum=0^{69,88}).

The non-pharmacological and non-surgical treatments used in the analyzed studies were described in Figure 3.

Table III provides a summary of the study characteristics for each of the RCT's included in the review.

META-ANALYSIS

Five studies^{48,61,66,68,91} meet the meta-analysis criteria. Information about different non-pharmacological and non-surgical interventions were collected, namely Acupuncture⁶⁸, Hydrotherapy⁶¹, Interferential Current (IFC)⁶⁶, Laser⁶⁸, Moxibustion⁹¹, Pulsed Electromagnetic Fields (PEMF)⁴⁸ and Resistance Training⁶⁰. Due to the reduced number of studies included in the metaanalysis, only data related to Visual Analogue Scale (VAS)^{48,66} and WOMAC (pain and physical function)^{48,60,61,66,68,91} outcomes were collected.

VAS

Regarding the VAS outcome at week 4 (Figure 4), significant statistical differences were found (P<0.0001), with a mean difference of -28.47 (95% CI: -41.41, -15.53) favoring the experimental groups and a high level of heterogeneity (Chi²=22.25; I²=87%) obtained. The IFC (especially at 40Hz [-36.60; 95% CI: -45.97, -27.23]) was superior to the PEMF (-11.30; 95% CI: -19.17, -3.43) intervention.

WOMAC

Regarding to WOMAC, the pain and physical function scores at week 3, 4, 6 and 12 were extracted to further analysis (Figure 5).

In WOMAC physical function, significant statistical

differences between the groups ($P \le 0.01$) at week 4, 6 and 12 were found, but not at week 3 (P=0.1), with mean differences favorable for the experimental groups (-8.89, -1.51 and -1.25 at week 4, 6 and 12 respectively). The heterogeneity was low at week 4 and 6 $(I^2=24\%$ and $I^2=0\%$, respectively) and moderate at week 3 and 12 (I^2 =26% and I^2 =39%, respectively). Overall, between intervention and control it was found significant statistical differences (P<0.00001), being the experimental groups superior to control groups (-4.04; 95% CI: -6.37, -1.7), with a high heterogeneity (Chi²=334.45; I²=96%). Concerning the studied interventions, at week 3 and 4 IFC 100 Hz was superior (-5.9; 95% CI: -13.07, 1.27 and -9.4; 95% CI: -10.37, -8.43, respectively) to PEMF, Moxibustion, IFC 40 Hz and IFC 180 Hz; at week 6 Moxibustion was superior (-1.53; 95% CI: -2.73, -0.33) to Hydrotherapy; and at week 12 Resistance Training was superior (-3.69; 95% CI: -6.4, -0.98) to Acupuncture, Laser and Moxibustion.

The WOMAC pain outcome had a slightly different behavior compared to WOMAC physical function. Significant statistical differences between the experimental and control groups (P<0.00001) were found at week 3 and 4, with a mean difference between the groups favoring the experimental ones (-14.24 and -30.68, respectively). On other hand, at week 6 and 12 no significant statistical differences were found between the groups (P=0.06 and P=0.32, respectively), yet the mean difference between the groups favored the experimental groups (-4.68 and -3.77, respectively). The heterogeneity was high at week 3 and 12 (I²=86% and $I^2=87\%$, respectively) and low at week 4 and 12 (I²=0%). Globally, the experimental group was statically (P<0.00001) superior to the control group (-14.21; 95% CI: -20.96, -7.46), however these results could be achieved by chance ($Chi^2=330.67$; $I^2=96\%$). Regarding the interventions effects IFC 40 Hz was superior (-19.3; 95% CI: -22.71, -15.89) to IFC 100 Hz, IFC 180 Hz and Moxibustion at week; IFC 100 Hz was superior (-31.6; 95% CI: -35.16, -28.04) to PEMF, IFC 40 Hz and IFC 180 Hz at week 4; Moxibustion was superior (-5.27; 95% CI: -10.69, 0.15) to Hydrotherapy at week 6; and Resistance Training was superior (-14.2; 95% CI: -22.31, -6.09) to Acupuncture, Laser and Moxibustion at week 12.

DISCUSSION

In this systematic review, the interventions had differ-

ent effects on the population: some improved all the outcomes evaluated; some improved only few outcomes; and others did not improve any outcome (even if the results improved comparatively to the baseline, they did not perform better than placebo interventions).

Among all the intervention studied, the results were more consistent, once again^{32,33,92-96}, for the positive influence of Exercise on the knee OA patients' lives. Unfortunately, due to the small number of studies gathered and different protocols used, they could not pinpoint the best type, duration, frequency or intensity of exercise that should be practiced by these patients (although Resistance Training was the one that reached the most interesting results, namely pain, strength and function^{43,50,60,67}). Through analyzing the results obtained, we are lead to think that, apparently: as long as the person does some type of exercise, he/she could benefit from it. It has already been documented that the main positive effects of Exercise include muscular hypertrophy and strengthening, and an increase of blood flow and joint lubrication. Regarding the increase of muscular strength, whatever the neuromuscular stimulus given to someone who is not used to doing physical exercises, its short-term effects will be a rapid muscular strength increase and hypertrophy^{97,98}. Therefore, since these OA patients have a more sedentary life style due to pain and functional limitations it is expected that they respond to neuromuscular stimulus in the same way as healthy people, who experience physical activity for the first time⁹⁹. Furthermore, an increase of blood flow, joint lubrication and movement could lead to temperature, electrical and pressure changes, resulting in a decreased pain (by the gait control mechanism or the endogenous opioid system) and increased knee ROM^{93,100,101}. So, the overall idea is to perform some type of physical activity that can benefit a strength increase of the thigh (with more emphasis on the quadriceps muscles) and hip muscles (important due to its biomechanical and disease relationship), adapting the volume (reps x sets x load) to the patient specificities and, at the same time, including soft cyclic movements that can be easy to learn and perform in order to increase joint lubrication. Moreover, different types of exercises should not be mixed. One explanation for the disadvantage of mixing exercises with different goals within the same session may be the molecular response, where resistance training increases the myofibrillar protein response and aerobic exercise increases the content of mitochondria in the muscle⁹³.

FIGURE 3. Non-pharmacological and non-surgical interventions used (n=39)

This molecular response will decrease when both aerobic and resistance exercises are performed within the same session⁹³. The exercise choice will mainly depend on the pain, functional limitations and morphological characteristics of each patient. For instance, if a patient has a low joint limitation and a great muscular imbalance, strength exercises should be executed (greater strength and muscular growth), but if a patient has a limited knee ROM and is overweight he/she should perform low load, cyclic, aerobic exercises (greater endurance and less joint pressure)99. Stabilization exercises could also be added to these strength exercises, since the knee morphological changes, motivated by OA, can lead to biomechanics imbalances and, consequently, instability^{4,65,72,102-104}. However, despite having interesting results, they were not better than the group that only performed strength exercises, implying that knee stability can be improved through strength training, without necessarily adding specific knee stabilization training^{65,72,105,106}. Therefore, its use will depend on the degree of instability that the patient presents (if he/she has too much instability, he/she will benefit from the exercises; if diminutive instability he/she will not benefit from this type of exercises). Moreover, in some overweight patients with muscular weakness and instability, Aquatic Exercises could be a good first intervention since^{61,84,88}: the possibility of having a serious injury due to fall is minimal; the joint pressure is lighten; there is weight loss; and physical performance based benefits from this type of exercise is similar from those practice on land.

In addition, these patients should preferably be supervised in their exercises as they reach better results relatively to the non-supervised ones⁶⁷. It is important to supervise these patients not only to ensure that the exercises are correctly performed (as they are not used to doing exercises), but also to adapt the exercises to the person concerned (although we expect certain type of patient – overweight elderly woman¹⁰⁷ – each person will present its specific limitations), allowing the crea-

FIGURE 4. Forest plot of the effect of IFC (40, 100 and 180 Hz) and PEMF in VAS, at week 4;

The green squares indicate the effect size of each study. The transverse lines show the 95% CI of the study. Black diamond represents the pooled estimate of every subgroup and the total effect;

Abbreviations: CI, Confidence Interval; IFC, Interferential Current; IV, Inverse Variance; PEMF, Pulsed Electromagnetic Fields; SD, Standardized Errors; VAS, Visual Analog Scale.

tion of individualized goals and generating a greater impact on the patient's life⁴⁹. Conversely, Bennell et al.⁴⁹ study did not find statistical significant differences (p>0.05) neither pain nor physical function, between those who were supervised by a physiotherapist and those who only did non-supervised home exercises. However, the authors refer that the 2 sessions over 24 weeks may have been insufficient to influence the outcomes⁴⁹. Therefore, we recommend the use of supervision, with better results reached with those who were supervised 3 times per week. However, often these patients are not supervised with the necessary regularity, because: 1) they do not have access to a professional who helps them; or 2) with the positive evolution after treatments, they will slowly leave supervision, becoming more independent, managing in the end their issues alone. So, specific programs should be applied in order to these patients could follow in their communities and still have positive results. From the programs studied, it seems that the Osteoarthritis of the Knee Self-Management Program was the one that globally generated the greatest gains⁵⁸.

Ideally, health professionals should evaluate each patient and create individual goals. The creation of goals adapted to the patient may be important to add other interventions to Exercise. For example, if the patient is obese (a common knee OA patients characteristic) a long-term diet could be added to Exercise. It has been shown that this intervention is more powerful in the reduction of the weight kilogram (kg), weight percentage (%), BMI and fat mass after 68 weeks, in comparison to the short-term diet group plus Exercise or even those that only done Exercise^{57,108}. It is also important to adapt the interventions on those who are not ready to perform exercises based on their functional limitations (an excessive muscle weakness or an extreme articular deficit) or pain (at movement or at rest). In these situations, it is necessary to perform a multimodal approach in order to improve the patients outcomes. However, due to the limited number of included studies, it is not possible to define which is the best intervention for each situation. For instance, patients that were intervened with Neuromuscular Electrical Stimulation (NMES) plus Exercise improved strength and muscular thickness over time, but were no better than those who have only done Exercise⁷⁵. The authors explain this lack of difference by the fact that the participants had no clinically significant muscle or functional impairment and hypothesized that the greater the muscle impairment is, the greater the NMES effect will be⁷⁵. Reflecting on this statement plus taking in consideration that those who were intervened with NMES showed better improvements in muscle thickness and anatomical cross-sectional area⁵⁹, if a patient has a major muscle deficit and is unable to perform exercise, NMES could be administrated at an early stage in an attempt to increase muscle strength; then, NMES plus some initial smooth exercises could be applied (simple, short and low load), so that the patient can have the gains associated with the exercise, in a second phase; and finally NMES can be progressively left over, focusing the time on executing strength exercises.

For an overall outcomes improvement, Moxibustion showed to be a good adjunctive intervention for knee OA patients^{71,91}. The mechanisms of action of the Moxibustion Therapy remain unclear. Factors such as temperature, smoke, odor, herbs and the stimulation of acupoints are likely to be involved in the possible

Study or Subgroup	Mea	operimen n SD		Mean	Control SD	Tota	Weigh	Mean Di t IV, Rand	fference om, 95% (CI Year	Mean Difference IV, Random, 95% Cl
2.1.1 WOMAC Pain, 3 weeks Gundog et al. 2012 (IFC 40Hz)	11.	62	15	17.1	14	15	4.89	6 -6 60 / 4	2.66, 1.6	31 2042	
Gundog et al. 2012 (IFC 4012) Gundog et al. 2012 (IFC 100Hz)	11.		15	17.1					3.07, 1.2		
Gundog et al. 2012 (IFC 180Hz)	13.		15	17.1					1.13, 3.5		
Zhao et al. 2014 (Moxibustion)	4.		55	5.58					1.81, 0.2		-
Subtotal (95% CI)			100			100			4.91, 0.42		◆
Heterogeneity: Tau [*] = 2.53; Chi [*] = 4.07, Test for overall effect: Z = 1.65 (P = 0.10)		= 0.25); l	*= 269	b							
2.1.2 WOMAC Pain, 4 weeks											
Gundog et al. 2012 (IFC 40Hz)	7.	2 1.6	15	16.1	1.5	15	8.59	6 -8.90[-1	0.01, -7.7	3] 2012	-
Gundog et al. 2012 (IFC 100Hz)	6.	7 1.2	15	16.1	1.5	15	8.69	6 -9.40[-1	0.37, -8.43	3] 2012	-
Gundog et al. 2012 (IFC 180Hz)	7.		15	16.1				6 -8.30[-1			+
Bagnato et al. 2016 (PEMF)	21.	6 9.6	30	26.8	8.2				9.72, -0.6		
Subtotal (95% CI) Heterogeneity: Tau ² = 0.18; Chi ² = 3.95, r	df = 3 (P	= 0.27); F	75 2 = 249			75	31.99	6 -8.89 [-	9.73, -8.05)	•
Test for overall effect: Z = 20.77 (P < 0.00		- 0.217,1	- 247	,							
2.1.3 WOMAC Pain, 6 weeks											
Zhao et al. 2014 (Moxibustion)		3 2.33	55	4.58					2.73,-0.3		-
Dias et. al 2017 (Hydrotherapy) Subtotal (95% CI)	51.0	6 20.45	33 88	50.94	19.44	32			-9.58, 9.8. 2.70, -0.31		•
Heterogeneity: Tau ^a = 0.00; Chi ^a = 0.11, Test for overall effect: Z = 2.48 (P = 0.01)		= 0.74); i					12107		211 0, 010		
2.1.4 WOMAC Pain, 12 weeks											
Hinman et al. 2014 (Acupuncture)	6.	7 3.8	64	7.3	3.9	69	8.59	100.0	-1.91, 0.7	1 2014	4
Hinman et al. 2014 (Acupuncture) Hinman et al. 2014 (Laser)	ю. 6.		64	7.3					-1.91, 0.7		-
Zhao et al. 2014 (Moxibustion)	2.8		55	4.41					2.76, -0.3		-
DeVita et al. 2018 (Resistance Training)			15	7.33					6.40, -0.9		
Subtotal (95% CI)	,		198			208			2.20, -0.3		•
Heterogeneity: Tau ² = 0.36; Chi ² = 4.93, Test for overall effect: Z = 2.59 (P = 0.010)		= 0.18); F	²= 39%	6							
Total (95% CI)			461			470	100.09	6 -4.04 [-0	6.37, -1.7(11	•
Heterogeneity: Tau ² = 16.28; Chi ² = 334.	45 df =	13 /P ≼ 0		· I ² = 96	396	410	100.07	-4.04[-	0.01,-1.10	4	•
Test for overall effect: $Z = 3.39$ (P = 0.000 Test for subgroup differences: Chi ² = 17	07)										
2.1 WOMAC Physical Function, 3 weeks											
2.1 WOMAC Physical Function, 3 weeks		11.4	15	59	51	15	7.1%	-13.60.61	9 92 -7 2	31 2012	
undog et al. 2012 (IFC 180Hz)	45.4	11.4 4.4	15 15	59 59	5.1 5.1	15 15	7.1% 7.5%	-13.60 [-1 -19.30 [-22			
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz)		11.4 4.4 4.8	15 15 15	59 59 59	5.1 5.1 5.1	15 15 15	7.5%	-19.30 [-22	.71, -15.8	a] 2012	
undog et al. 2012 (IFC 180Hz)	45.4 39.7	4.4 4.8	15 15	59	5.1	15	7.5%	-19.30 [-22 -18.10 [-21	.71, -15.8	9] 2012 6] 2012	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz)	45.4 39.7 40.9	4.4 4.8 14.34	15 15	59 59	5.1 5.1	15 15	7.5% 7.5%	-19.30 [-22 -18.10 [-21	.71, -15.8 .64, -14.5 0.21, 0.9	9] 2012 6] 2012 9] 2014	 ◆
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 10Hz) nao et al. 2014 (Moxibustion) bibtotal (95% CI) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, (45.4 39.7 40.9 22.1 df = 3 (P	4.4 4.8 14.34	15 15 55 2 100	59 59 6.71	5.1 5.1	15 15 55	7.5% 7.5% 7.2%	-19.30 [-22 -18.10 [-21 -4.61 [-1	.71, -15.8 .64, -14.5 0.21, 0.9	9] 2012 6] 2012 9] 2014	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) nao et al. 2014 (Moxibustion) ubtotal (95% CI)	45.4 39.7 40.9 22.1 df = 3 (P	4.4 4.8 14.34	15 15 55 2 100	59 59 6.71	5.1 5.1	15 15 55	7.5% 7.5% 7.2%	-19.30 [-22 -18.10 [-21 -4.61 [-1	.71, -15.8 .64, -14.5 0.21, 0.9	9] 2012 6] 2012 9] 2014	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) nao et al. 2014 (Moxibustion) ubtotal (95% CI) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, est for overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks	45.4 39.7 40.9 22.1 df = 3 (P 1)	4.4 4.8 14.34 < 0.0001	15 15 55 2 100 ; I [*] = 8	59 59 6.71 6%	5.1 5.1 15.6	15 15 55 100	7.5% 7.5% 7.2% 29.3%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -14.24 [-20	.71, -15.8 .64, -14.5 10.21, 0.9 0.21, -8.2	9] 2012 5] 2012 9] 2014	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) hao et al. 2014 (Moxibustion) bibtotal (95% CI) eterogeneity: Tau [#] = 31.18; Chi [#] = 21.38, est for overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz)	45.4 39.7 40.9 22.1 df = 3 (P 1) 27.2	4.4 4.8 14.34 < 0.0001)	15 15 2 55 2 100); I² = 8 15	59 59 6.71 6% 57.8	5.1 5.1 15.6 6.1	15 15 55 100	7.5% 7.5% 7.2% 29.3%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -14.24 [-24 -30.60 [-34	.71, -15.8 .64, -14.5 10.21, 0.9 0.21, -8.2 .59, -26.6	a) 2012 b) 2012 c) 2014 c) 2014 c) 2012 c) 2012	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2014 (Moxibustion) ubtotal (95% CI) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, est for overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 180Hz)	45.4 39.7 40.9 22.1 df = 3 (P 1) 27.2 29.1	4.4 4.8 14.34 < 0.0001) 5 10.7	15 15 25 2 100 ; I [≠] = 8 15 15	59 59 6.71 6% 57.8 57.8	5.1 5.1 15.6 6.1 6.1	15 15 55 100	7.5% 7.5% 29.3% 7.4% 7.2%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -14.24 [-2] -30.60 [-34 -28.70 [-34	.71, -15.8 .64, -14.5 10.21, 0.9 0.21, -8.2 .59, -26.6 .93, -22.4	a) 2012 b) 2012 c) 2014 c) 2014 c) 2012 c)	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) hao et al. 2014 (Moxibustion) ubtotal (95% CI) eterogeneity: Tau ² = 31.18; Chi ² = 21.38, est for overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) undog et al. 2012 (IFC 100Hz)	45.4 39.7 40.9 22.1 df = 3 (P 1) 27.2 29.1 26.2	4.4 4.8 14.34 < 0.0001) 5 10.7 3.5	15 55 2 100 ; I ² = 8 15 15 15	59 59 6.71 6% 57.8 57.8 57.8	5.1 5.1 15.6 6.1 6.1 6.1	15 55 100 15 15 15	7.5% 7.5% 29.3% 7.4% 7.2% 7.5%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -14.24 [-2] -30.60 [-34 -28.70 [-34 -31.60 [-35	.71, -15.8 .64, -14.5 10.21, 0.9 0.21, -8.2 .59, -26.6 .93, -22.4 .16, -28.0	a) 2012 b) 2012 c) 2014 c) 2014 c) 2014 c) 2012 c)	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) hao et al. 2014 (Moxibustion) bibtotal (95% CI) eterogeneity: Tau [#] = 31.18; Chi [#] = 21.38, est for overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) agnato et al. 2016 (PEMF)	45.4 39.7 40.9 22.1 df = 3 (P 1) 27.2 29.1	4.4 4.8 14.34 < 0.0001) 5 10.7	15 55 2 100 ; I ² = 8 15 15 15	59 59 6.71 6% 57.8 57.8	5.1 5.1 15.6 6.1 6.1	15 15 55 100	7.5% 7.5% 7.2% 29.3% 7.4% 7.2% 7.5% 6.1%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -14.24 [-20 -30.60 [-34 -28.70 [-34 -31.60 [-35 -28.00 [-40	.71, -15.8 .64, -14.5 0.21, 0.9 0.21, -8.2 .59, -26.6 .93, -22.4 .16, -28.0 .38, -15.6	a) 2012 3) 2012 3) 2014 1) 2014 1) 2012 7) 2012 4) 2012 2) 2016	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2014 (MoxIbustion) bitotal (95% CI) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, es sist for overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) undog et al. 2012 (IFC 100Hz) undog et al. 2016 (PEMF) ubtotal (95% CI)	45.4 39.7 40.9 22.1 df = 3 (P 1) 27.2 29.1 26.2 61.7	4.4 4.8 14.34 < 0.0001) 5 10.7 3.5 3.79	15 55 2 100 ; I ² = 8 15 15 30 75	59 59 6.71 6% 57.8 57.8 57.8	5.1 5.1 15.6 6.1 6.1 6.1	15 55 100 15 15 15 15 30	7.5% 7.5% 7.2% 29.3% 7.4% 7.2% 7.5% 6.1%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -14.24 [-2] -30.60 [-34 -28.70 [-34 -31.60 [-35	.71, -15.8 .64, -14.5 0.21, 0.9 0.21, -8.2 .59, -26.6 .93, -22.4 .16, -28.0 .38, -15.6	a) 2012 3) 2012 3) 2014 1) 2014 1) 2012 7) 2012 4) 2012 2) 2016	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) hao et al. 2014 (Moxibustion) bibtotal (95% CI) eterogeneity: Tau [#] = 31.18; Chi [#] = 21.38, est for overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) agnato et al. 2016 (PEMF)	45.4 39.7 40.9 22.1 df = 3 (P 1) 27.2 29.1 26.2 61.7 = 3 (P = 1	4.4 4.8 14.34 < 0.0001) 5 10.7 3.5 3.79	15 55 2 100 ; I ² = 8 15 15 30 75	59 59 6.71 6% 57.8 57.8 57.8	5.1 5.1 15.6 6.1 6.1 6.1	15 55 100 15 15 15 15 30	7.5% 7.5% 7.2% 29.3% 7.4% 7.2% 7.5% 6.1%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -14.24 [-20 -30.60 [-34 -28.70 [-34 -31.60 [-35 -28.00 [-40	.71, -15.8 .64, -14.5 0.21, 0.9 0.21, -8.2 .59, -26.6 .93, -22.4 .16, -28.0 .38, -15.6	a) 2012 3) 2012 3) 2014 1) 2014 1) 2012 7) 2012 4) 2012 2) 2016	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2014 (Moxibustion) ubtotal (95% CI) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, e sest for overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 180Hz) undog et al. 2013 (IFC 180Hz) undog et al. 2014 (IFC 180Hz) undog et al. 2015 (IFC 180Hz) undog et al. 2015 (IFC 180Hz) undog et al. 2014 (IFC 180Hz) undog et al. 2015 (IFC 180Hz) undog et al. 2015 (IFC 180Hz) undog et al. 2015 (IFC 180Hz) un	45.4 39.7 40.9 22.1 df = 3 (P 1) 27.2 29.1 26.2 61.7 = 3 (P = 0 01)	4.4 4.8 14.34 < 0.0001) 5 10.7 3.5 3.79 0.84); I ² =	15 55 2 100 ; I [#] = 8 15 15 15 30 75 0%	59 59 6.71 6% 57.8 57.8 57.8 89.7	5.1 5.1 15.6 6.1 6.1 34.4	15 55 100 15 15 15 30 75	7.5% 7.5% 7.2% 29.3% 7.4% 7.2% 7.5% 6.1% 28.1%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -14.24 [-2] -30.60 [-34 -28.70 [-34 -31.60 [-35 -28.00 [-40 -30.68 [-33.	.71, -15.81 .64, -14.51 0.21, 0.91 0.21, -8.21 .59, -26.61 .93, -22.41 .16, -28.01 .38, -15.61 .07, -28.24	a) 2012 b) 2012 c) 2014 c) 2014 c) 2014 c) 2012 c) 2012 c) 2012 c) 2012 c) 2016 c) 2016 c) 2016 c) 2016 c) 2012 c) 2016 c) 20	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) hao et al. 2014 (Moxibustion) bibtotal (95% CI) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, est for overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) agnato et al. 2012 (IFC 100Hz) agnato et al. 2016 (PEMF) bibtotal (95% CI) bibtotal (95% CI) ast for overall effect: Z = 25.08 (P < 0.0000 2.3 WOMAC Physical Function, 6 weeks hao et al. 2014 (Moxibustion)	45.4 39.7 40.9 22.1 df = 3 (P 1) 27.2 29.1 26.2 61.7 = 3 (P = 0	4.4 4.8 14.34 < 0.0001) 5 10.7 3.5 3.79 0.84); I ² =	15 55 2 100 ; I [#] = 8 15 15 15 30 75 0%	59 59 6.71 6% 57.8 57.8 57.8	5.1 5.1 15.6 6.1 6.1 34.4	15 55 100 15 15 15 15 30	7.5% 7.5% 7.2% 29.3% 7.4% 7.2% 7.5% 6.1%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -14.24 [-2] -30.60 [-34 -28.70 [-34 -31.60 [-35 -30.68 [-33, -30.68 [-33, -5.27 [-1	.71, -15.81 .64, -14.51 0.21, 0.91 0.21, -8.21 .59, -26.61 .93, -22.41 .16, -28.01 .38, -15.61 .07, -28.24	a) 2012 b) 2012 c) 2012 c) 2014 c) 2014 c) 2012 c) 2014 c) 2012 c) 2012 c) 2012 c) 2014 c) 2012 c) 2014 c) 2012 c) 2012 c) 2012 c) 2014 c) 2014 c) 2012 c) 2014 c) 2014 c) 2012 c) 2014 c)	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2014 (Moxibustion) bitotal (95% CI) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, (sist for overall effect: Z = 4.67 (P < 0.0001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 10Hz) agnato et al. 2016 (PEMF) ubtotal (95% CI) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.83, df = est for overall effect: Z = 25.08 (P < 0.0000 2.3 WOMAC Physical Function, 6 weeks hao et al. 2017 (Hydrothurapy)	45.4 39.7 40.9 22.1 df = 3 (P 1) 27.2 29.1 26.2 61.7 = 3 (P = 1 01) 3 16.43	4.4 4.8 14.34 < 0.0001) 5 10.7 3.5 3.79 0.84); I ² =	15 55 2 100 2 15 15 15 15 30 75 0% 55 5 33 5	59 59 6.71 6% 57.8 57.8 89.7 21.7	5.1 5.1 15.6 6.1 6.1 34.4	15 55 100 15 15 15 30 75 55 32	7.5% 7.5% 7.2% 29.3% 7.4% 7.2% 7.5% 6.1% 28.1% 7.3% 6.5%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -14.24 [-2] -30.60 [-34 -28.70 [-34 -28.70 [-34 -31.60 [-35 -28.00 [-40 -30.68 [-33.	.71, -15.81 .64, -14.51 10.21, 0.91 0.21, -8.21 .59, -26.6 .93, -22.41 .16, -28.0 .38, -15.61 .07, -28.21 10.69, 0.11 12.79, 7.61	a) 2012 b) 2012 c) 2014 c) 2014 c) 2014 c) 2012 c) 2012 c) 2012 c) 2016 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2012 c) 2014 c) 2012 c) 2012 c) 2012 c) 2012 c) 2012 c) 2012 c) 2014 c) 2012 c) 2014 c) 2012 c) 2014 c) 2017 c) 2017 c) 2014 c) 2017 c)	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2014 (Moxibustion) ubtotal (95% CI) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, essifor overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) agnato et al. 2012 (IFC 100Hz) agnato et al. 2012 (IFC 100Hz) agnato et al. 2016 (PEMF) ubtotal (95% CI) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.83, df- sist for overall effect: Z = 25.08 (P < 0.0000 2.3 WOMAC Physical Function, 6 weeks nao et al. 2014 (Moxibustion) las et al. 2017 (Hydrotherapy) ubtotal (95% CI)	45.4 39.7 40.9 22.1 df = 3 (P 1) 27.2 29.1 26.2 61.7 = 3 (P = 0 01) 3 16.43 52.76	4.4 4.8 14.34 < 0.0001) 5 10.7 3.5 3.79 0.84); I ^a = 12.16 20.58	15 15 55 2 100 2 15 15 15 15 15 15 30 75 0% 55 55 88 8	59 59 6.71 6% 57.8 57.8 89.7 21.7	5.1 5.1 15.6 6.1 6.1 34.4	15 55 100 15 15 15 30 75	7.5% 7.5% 7.2% 29.3% 7.4% 7.2% 7.5% 6.1% 28.1%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -14.24 [-2] -30.60 [-34 -28.70 [-34 -28.70 [-34 -31.60 [-35 -28.00 [-40 -30.68 [-33.	.71, -15.81 .64, -14.51 0.21, 0.91 0.21, -8.21 .59, -26.61 .93, -22.41 .16, -28.01 .38, -15.61 .07, -28.24	a) 2012 b) 2012 c) 2014 c) 2014 c) 2014 c) 2012 c) 2012 c) 2012 c) 2016 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2012 c) 2014 c) 2012 c) 2012 c) 2012 c) 2012 c) 2012 c) 2012 c) 2014 c) 2012 c) 2014 c) 2012 c) 2014 c) 2017 c) 2017 c) 2014 c) 2017 c)	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2014 (Moxibustion) bitotal (95% CI) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, (sist for overall effect: Z = 4.67 (P < 0.0001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 10Hz) agnato et al. 2016 (PEMF) ubtotal (95% CI) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.83, df = est for overall effect: Z = 25.08 (P < 0.0000 2.3 WOMAC Physical Function, 6 weeks hao et al. 2017 (Hydrothurapy)	45.4 39.7 40.9 22.1 df = 3 (P 1) 27.2 29.1 26.2 61.7 = 3 (P = 0 01) 3 16.43 52.76	4.4 4.8 14.34 < 0.0001) 5 10.7 3.5 3.79 0.84); I ^a = 12.16 20.58	15 55 2 100 15 15 15 15 15 30 75 0%	59 59 6.71 6% 57.8 57.8 89.7 21.7	5.1 5.1 15.6 6.1 6.1 34.4	15 55 100 15 15 15 30 75 55 32	7.5% 7.5% 7.2% 29.3% 7.4% 7.2% 7.5% 6.1% 28.1% 7.3% 6.5%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -14.24 [-2] -30.60 [-34 -28.70 [-34 -28.70 [-34 -31.60 [-35 -28.00 [-40 -30.68 [-33.	.71, -15.81 .64, -14.51 10.21, 0.91 0.21, -8.21 .59, -26.6 .93, -22.41 .16, -28.0 .38, -15.61 .07, -28.21 10.69, 0.11 12.79, 7.61	a) 2012 b) 2012 c) 2014 c) 2014 c) 2014 c) 2012 c) 2012 c) 2012 c) 2016 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2012 c) 2014 c) 2012 c) 2012 c) 2012 c) 2012 c) 2012 c) 2012 c) 2014 c) 2012 c) 2014 c) 2012 c) 2014 c) 2017 c) 2017 c) 2014 c) 2017 c)	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) hao et al. 2014 (Moxibustion) bibtotal (95% CI) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, est for overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) agnato et al. 2012 (IFC 100Hz) agnato et al. 2013 (IFC 100Hz) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.83, df = st for overall effect: Z = 25.08 (P < 0.0000 2.3 WOMAC Physical Function, 6 weeks hao et al. 2014 (Moxibustion) ias et. al. 2017 (Hydrotherapy) ubtotal (95% CI) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.21, df =	45.4 39.7 40.9 22.1 df = 3 (P 1) 27.2 29.1 26.2 61.7 = 3 (P = 1 01) 52.76 = 1 (P = 1	4.4 4.8 14.34 < 0.0001) 5 10.7 3.5 3.79 0.84); I ^a = 12.16 20.58	15 55 2 100 15 15 15 15 15 30 75 0%	59 59 6.71 6% 57.8 57.8 89.7 21.7	5.1 5.1 15.6 6.1 6.1 34.4	15 55 100 15 15 15 30 75 55 32	7.5% 7.5% 7.2% 29.3% 7.4% 7.2% 7.5% 6.1% 28.1% 7.3% 6.5%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -14.24 [-2] -30.60 [-34 -28.70 [-34 -28.70 [-34 -31.60 [-35 -28.00 [-40 -30.68 [-33.	.71, -15.81 .64, -14.51 10.21, 0.91 0.21, -8.21 .59, -26.6 .93, -22.41 .16, -28.0 .38, -15.61 .07, -28.21 10.69, 0.11 12.79, 7.61	a) 2012 b) 2012 c) 2014 c) 2014 c) 2014 c) 2012 c) 2012 c) 2012 c) 2016 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2012 c) 2014 c) 2012 c) 2012 c) 2012 c) 2014 c) 2012 c) 2014 c) 2012 c) 2014 c) 2017 c)	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2014 (Moxibustion) ubtotal (95% CI) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, essifor overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) agnato et al. 2016 (PEMF) ubtotal (95% CI) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.83, df est for overall effect: Z = 25.08 (P < 0.0000 2.3 WOMAC Physical Function, 6 weeks nao et al. 2014 (Moxibustion) las et al 2017 (Hydrotherapy) ubtotal (95% CI) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.21, df = est for overall effect: Z = 1.91 (P = 0.06)	45.4 39.7 40.9 22.1 df = 3 (P 1) 27.2 29.1 26.2 61.7 = 3 (P = 1 01) 52.76 = 1 (P = 1	4.4 4.8 14.34 < 0.0001; 5 10.7 3.5 3.79 0.84); I ² = 12.16 20.58 0.65); I ² =	15 55 2 100 15 15 15 15 15 30 75 0%	59 59 6.71 6% 57.8 57.8 57.8 89.7 21.7 1 5.34 2	5.1 5.1 15.6 6.1 6.1 34.4	15 55 100 15 15 15 30 75 55 32	7.5% 7.5% 7.2% 29.3% 7.4% 7.2% 7.5% 6.1% 28.1% 7.3% 6.5%	-19.30 [-22 -18.10 [-21 -4.61 [-1] -14.24 [-2] -30.60 [-34 -28.70 [-34 -31.60 [-35 -28.00 [-40 -30.68 [-33, -5.27 [-1 -2.58 [-1 -4.68 [-	.71, -15.81 .64, -14.51 10.21, 0.91 0.21, -8.21 .59, -26.6 .93, -22.41 .16, -28.0 .38, -15.61 .07, -28.21 10.69, 0.11 12.79, 7.61	 2012 2012 2014 2012 2014 2012 2012 2012 2012 2012 2012 2012 2012 2016 2014 2017 2014 	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) hao et al. 2014 (Moxibustion) bibtotal (95% CI) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, est for overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) agnato et al. 2012 (IFC 100Hz) agnato et al. 2016 (PEMF) bibtotal (95% CI) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.83, df est for overall effect: Z = 25.08 (P < 0.0000 2.3 WOMAC Physical Function, 6 weeks hao et al. 2014 (Moxibustion) ias et. al 2017 (Hydrotherapy) bibtotal (95% CI) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.21, df est for overall effect: Z = 1.91 (P = 0.06) 2.4 WOMAC Physical Function, 12 week	45.4 39.7 40.9 22.1 df = 3 (P 1) 26.2 61.7 = 3 (P = 1 01) 3 16.43 52.76 = 1 (P = 1 (S	4.4 4.8 14.34 < 0.0001; 5 10.7 3.5 3.79 0.84); * = 12.16 20.58 0.65); * =	15 55 100 100 15 15 15 15 30 75 0% 55 33 55 88 80% 64	59 59 6.71 6% 57.8 57.8 57.8 89.7 21.7 1 5.34 2	5.1 5.1 15.6 6.1 6.1 6.1 6.1 34.4 13.2	15 55 100 15 15 15 30 75 55 32 87	7.5% 7.5% 29.3% 29.3% 7.4% 7.2% 6.1% 28.1% 7.3% 6.5% 13.7%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -14.24 [-2] -30.60 [-34 -28.70 [-34 -31.60 [-35 -38.00 [-40 -30.68 [-33] -5.27 [-1 -2.58 [-1 -4.68 [- -1.10 [.71, -15.8; .64, -14.5; 0.21, 0.9; 0.21, -8.27 .59, -26.6; .93, -22.4; .16, -28.0; .38, -15.6; .07, -28.2; 10.69, 0.1; 12.79, 7.6; -9.47, 0.1;	a) 2012 b) 2012 c) 2012 c) 2014 c) 2012 c) 2016 b) 2014 c) 2014 c) 2014	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) hao et al. 2014 (Moxibustion) bibtotal (95% CI) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, est for overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) agnato et al. 2012 (IFC 100Hz) agnato et al. 2012 (IFC 100Hz) agnato et al. 2016 (PEMF) bibtotal (95% CI) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.83, df = st for overall effect: Z = 25.08 (P < 0.0000 2.3 WOMAC Physical Function, 6 weeks hao et al. 2014 (Moxibustion) las et. al 2017 (Hydrotherapy) bibtotal (95% CI) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.21, df = st for overall effect: Z = 1.91 (P = 0.06) 2.4 WOMAC Physical Function, 12 week inman et al. 2014 (Moxibustion) inma et al. 2014 (Moxibustion) inman et al. 2014 (Moxibustion)	45.4 39.7 40.9 22.1 df = 3 (P 1) 22.2 29.1 26.2 61.7 5 3 (P = 1 01) 3 16.43 52.76 = 1 (P = 1 (S 21.9	4.4 4.8 14.34 < 0.0001; 5 10.7 3.5 3.79 0.84); * = 12.16 20.58 0.65); * =	15 55 55 100 15 15 15 15 15 30 77 775 0% 555 64 76 7	59 59 6,71 5% 57.8 57.8 57.8 89.7 21.7 1.98 1.98 1.23	5.1 5.1 15.6 6.1 6.1 6.1 34.4 16.53 21.41	15 55 100 15 15 15 15 30 75 55 32 87 69 55 69	7.5% 7.5% 29.3% 7.4% 7.2% 6.1% 28.1% 7.3% 6.5% 13.7%	-19.30 [-22 -18.10 [-21 -4.61 [-1] -4.61 [-1] -14.24 [-2] -30.60 [-34 -28.70 [-34 -31.60 [-35 -28.00 [-40 -30.68 [-33, -5.27 [-1] -4.68 [-7.37 [-1] -5.50	.71, -15.8; .64, -14.5; 0.21, 0.9; 0.21, -8.27 .59, -26.6; .93, -22.4; .16, -28.0; .38, -15.6; .07, -28.24 10.69, 0.1; 12.79, 7.6; -9,47, 0.1; -5.43, 3.2; .17, -1.5; [1.03, 9.9;	 a) 2012 2012 b) 2012 2012 c) 2012 3) 2014 c) 1 c) 1 c) 2012 2012 c) 2012 2012 c) 2012 2012 c) 2014 c) 2012 2014 c) 2013 2014 c) 2014 	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2014 (IFC 40Hz) ao et al. 2014 (Moxibustion) bitotal (95% CI) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, (sit for overall effect. Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 180Hz) signato et al. 2016 (PEMF) ubtotal (95% CI) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.83, df = sist for overall effect. Z = 25.08 (P < 0.0000 2.3 WOMAC Physical Function, 6 weeks tao et al. 2014 (Moxibuston) ias et. al 2017 (Hydrotherapy) ubtotal (95% CI) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.21, df = sit for overall effect. Z = 1.91 (P = 0.06) 2.4 WOMAC Physical Function, 12 week inman et al. 2014 (Acupuncture) vita et al. 2014 (Resistance Training)	45.4 39.7 40.9 22.1 df = 3 (P 22.1 df = 3 (P 22.1 26.2 61.7 = 3 (P = 1 26.2 61.7 = 3 (P = 1 01) 5 = 16.43 52.76 = 1 (P = 1 (S = 21.9) 21.9 (S = 21.9) 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.	4.4 4.8 14.34 < 0.0001; 5 10.7 3.5 3.79 0.84); * = 12.16 20.58 0.65); * = 12.3 12.66 13.1 9.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59 59 6,71 5% 57.8 57.8 57.8 89.7 21.7 1.98 1.98 1.23	5.1 5.1 15.6 6.1 6.1 6.1 34.4 16.63 21.41	15 55 100 15 15 15 30 75 55 32 87 69 56 95 69 51	7.5% 7.2% 29.3% 7.4% 7.2% 7.5% 6.5% 13.7% 7.4% 7.4% 7.4% 7.4%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -4.61 [-1 -14.24 [-21 -30.60 [-34 [-28.70 [-34 -31.60 [-35 -38.00 [-40 -30.68 [-33. -5.27 [-1 -2.58 [-1 -4.68 [- -7.37 [-1 -5.50 -14.20 [-2	.71, -15.8; .64, -14.5; 0.0,21, 0.9; 0.0,21, 0.9; 0.0,21, -8.2; .93, -22.4; 16, -28.0; .38, -15.6; .07, -28.24; 10, 69, 0.11; 12,79, 7,6; -9,47, 0.1; -5,43, 3.2; 3.17, -1.5; [1.03, 9.9; 2.31, -6.0;	 a) 2012 2012 b) 2012 2012 c) 2012 3) 2014 c) 1 c) 1 c) 2012 1 c) 2012 1 c) 2012 1 c) 2012 1 c) 1 c) 2012 1 c) 1 	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) hao et al. 2014 (Moxibustion) bibtotal (95% CI) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, est for overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) agnato et al. 2012 (IFC 100Hz) agnato et al. 2016 (PEMF) bibtotal (95% CI) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.83, df- est for overall effect: Z = 25.08 (P < 0.0000 2.3 WOMAC Physical Function, 6 weeks hao et al. 2014 (Moxibustion) ias et al 2017 (Hydrotherapy) bitotal (95% CI) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.21, df- est for overall effect: Z = 1.91 (P = 0.06) 2.4 WOMAC Physical Function, 12 week imman et al. 2014 (Moxibustion) ias et al. 2014 (Moxibustion) inore at al. 2014 (Moxibustion) i	45.4 39.7 40.9 22.1 df = 3 (P 22.1 df = 3 (P 22.1 26.2 61.7 = 3 (P = 1 26.2 61.7 = 3 (P = 1 01) 3 5 27.2 29.1 26.2 61.7 = 3 (P = 1 26.2 61.7 = 1 (P = 1 26.2 61.7 = 1 (P = 1 26.2 61.7 = 1 (P = 1 26.2) 6 1 (P = 1 26.2) 7 (P = 1 (P = 1	4.4 4.8 14.34 < 0.0001; 5 10.7 3.5 3.79 0.84); *= 12.16 20.58 0.65); *= 12.66 13.1 9.5	$\begin{array}{c} 15 \\ 55 \\ 55 \\ 100 \\ 110 \\ 15 \\ 15 \\ 15$	59 59 6,71 5% 57.8 57.8 57.8 57.8 89.7 21.7 1 5.34 2 1.98 1 23 21	5.1 5.1 15.6 6.1 6.1 6.1 34.4 16.53 21.41	15 55 100 15 15 15 15 30 75 55 32 87 69 55 69	7.5% 7.5% 29.3% 7.4% 7.2% 6.1% 28.1% 7.3% 6.5% 13.7%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -4.61 [-1 -14.24 [-21 -30.60 [-34 [-28.70 [-34 -31.60 [-35 -38.00 [-40 -30.68 [-33. -5.27 [-1 -2.58 [-1 -4.68 [- -7.37 [-1 -5.50 -14.20 [-2	.71, -15.8; .64, -14.5; 0.21, 0.9; 0.21, -8.27 .59, -26.6; .93, -22.4; .16, -28.0; .38, -15.6; .07, -28.24 10.69, 0.1; 12.79, 7.6; -9,47, 0.1; -5.43, 3.2; .17, -1.5; [1.03, 9.9;	 a) 2012 2012 b) 2012 2012 c) 2012 3) 2014 c) 1 c) 1 c) 2012 1 c) 2012 1 c) 2012 1 c) 2012 1 c) 1 c) 2012 1 c) 1 	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2014 (MoxIbustion) bitotal (95% CI) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, (sist for overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) agnato et al. 2016 (PEMF) ubtotal (95% CI) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.83, df = ast for overall effect: Z = 25.08 (P < 0.0000 2.3 WOMAC Physical Function, 6 weeks nao et al. 2017 (Hydrotherapy) ubtotal (95% CI) eterogeneity: Tau ^a = 0.0; Chi ^a = 0.21, df = sist for overall effect: Z = 1.91 (P = 0.06) 2.4 WOMAC Physical Function, 12 week inman et al. 2014 (Moxibustion) ninman et al. 2014 (Moxibustion) inman et al. 2014 (Resistance Training) ubtotal (95% CI)	45.4 39.7 40.9 22.1 df = 3 (P 22.1 df = 3 (P 22.1 26.2 61.7 = 3 (P = 1 26.2 61.7 = 3 (P = 1 01) 3 5 27.2 29.1 26.2 61.7 = 3 (P = 1 26.2 61.7 = 1 (P = 1 26.2 61.7 = 1 (P = 1 26.2 61.7 = 1 (P = 1 26.2) 6 1 (P = 1 26.2) 7 (P = 1 (P = 1	4.4 4.8 14.34 < 0.0001; 5 10.7 3.5 3.79 0.84); *= 12.16 20.58 0.65); *= 12.66 13.1 9.5	$\begin{array}{c} 15 \\ 55 \\ 55 \\ 100 \\ 110 \\ 15 \\ 15 \\ 15$	59 59 6,71 5% 57.8 57.8 57.8 57.8 89.7 21.7 1 5.34 2 1.98 1 23 21	5.1 5.1 15.6 6.1 6.1 6.1 34.4 16.53 21.41	15 55 100 15 15 15 30 75 55 32 87 69 56 95 69 51	7.5% 7.2% 29.3% 7.4% 7.2% 7.5% 6.5% 13.7% 7.4% 7.4% 7.4% 7.4%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -4.61 [-1 -14.24 [-21 -30.60 [-34 [-28.70 [-34 -31.60 [-35 -38.00 [-40 -30.68 [-33. -5.27 [-1 -2.58 [-1 -4.68 [- -7.37 [-1 -5.50 -14.20 [-2	.71, -15.8; .64, -14.5; 0.0,21, 0.9; 0.0,21, 0.9; 0.0,21, -8.2; .93, -22.4; 16, -28.0; .38, -15.6; .07, -28.24; 10, 69, 0.11; 12,79, 7,6; -9,47, 0.1; -5,43, 3.2; 3.17, -1.5; [1.03, 9.9; 2.31, -6.0;	 a) 2012 2012 b) 2012 2012 c) 2012 3) 2014 c) 1 c) 1 c) 2012 1 c) 2012 1 c) 2012 1 c) 2012 1 c) 1 c) 2012 1 c) 1 	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) hao et al. 2014 (Moxibustion) bibtotal (95% CI) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, est for overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) agnato et al. 2012 (IFC 100Hz) agnato et al. 2016 (PEMF) bibtotal (95% CI) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.83, df- est for overall effect: Z = 25.08 (P < 0.0000 2.3 WOMAC Physical Function, 6 weeks hao et al. 2014 (Moxibustion) ias et al 2017 (Hydrotherapy) bitotal (95% CI) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.21, df- est for overall effect: Z = 1.91 (P = 0.06) 2.4 WOMAC Physical Function, 12 week imman et al. 2014 (Moxibustion) ias et al. 2014 (Moxibustion) inore at al. 2014 (Moxibustion) i	45.4 39.7 40.9 22.1 df = 3 (P 22.1 df = 3 (P 22.1 26.2 61.7 = 3 (P = 1 26.2 61.7 = 3 (P = 1 01) 3 5 27.2 29.1 26.2 61.7 = 3 (P = 1 26.2 61.7 = 1 (P = 1 26.2 61.7 = 1 (P = 1 26.2 61.7 = 1 (P = 1 26.2) 6 1 (P = 1 26.2) 7 (P = 1 (P = 1	4.4 4.8 14.34 < 0.0001; 5 10.7 3.5 3.79 0.84); * = 12.16 20.58 0.65); * = 12.66 13.1 9.5 < 0.0001;	$\begin{array}{c} 15 \\ 55 \\ 55 \\ 100 \\ 110 \\ 15 \\ 15 \\ 15$	59 59 6,71 5% 57.8 57.8 57.8 57.8 89.7 21.7 1 5.34 2 1.98 1 23 21	5.1 5.1 15.6 6.1 6.1 6.1 34.4 16.53 21.41 13.2 17.94 13.2 12.9	15 15 55 100 15 15 15 30 75 55 32 87 69 55 69 55 69 55 208	7.5% 7.2% 29.3% 7.4% 7.2% 7.5% 6.5% 13.7% 7.4% 7.4% 7.4% 7.4%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -4.61 [-1 -14.24 [-21 -30.60 [-34 [-28.70 [-34 -31.60 [-35 -38.00 [-40 -30.68 [-33. -5.27 [-1 -2.58 [-1 -4.68 [- -7.37 [-1 -5.50 -14.20 [-2	71, -15.8; .64, -14.5; 0.21, 0.9; 0.21, -8.2; 0.21, -8.2; .59, -26.6; .93, -22.4; .16, -28.0; .38, -15.2; .07, -28.2; 10.69, 0.1; 2.79, 7.6; -9.47, 0.1; -5.43, 3.2; 3.17, -1.5; [1.03, 9.9; 2.31, -6.0; 1.22, 3.6;	a) 2012 b) 2012 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2012 c) 2014 a) 2017 c) 2014 a) 2017 c) 2014 a) 2014 a) 2014 a) 2018	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) hao et al. 2014 (Moxibustion) bibtotal (95% CI) eterogeneity: Tau [#] = 31.18; Chi [#] = 21.38, (stfor overall effect: Z = 4.67 (P < 0.00001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) agnato et al. 2012 (IFC 100Hz) agnato et al. 2012 (IFC 100Hz) agnato et al. 2012 (IFC 100Hz) store et al. 2014 (FC 100Hz) agnato et al. 2015 (FEMF) bibtotal (95% CI) eterogeneity: Tau [#] = 0.00; Chi [#] = 0.83, df = stfor overall effect: Z = 25.08 (P < 0.0000 2.3 WOMAC Physical Function, 6 weeks hao et al. 2014 (Moxibustion) las et al. 2014 (Hydrotherapy) bibtotal (95% CI) eterogeneity: Tau [#] = 0.00; Chi [#] = 0.21, df = stfor overall effect: Z = 1.91 (P = 0.06) 2.4 WOMAC Physical Function, 12 week imman et al. 2014 (Laser) hao et al. 2014 (Moxibustion) inman et al. 2014 (Resistance Training) bibtotal (95% CI) eterogeneity: Tau [#] = 49.26; Chi [#] = 22.80, (stor overall effect: Z = 0.99 (P = 0.32) tal (95% CI) eterogeneity: Tau [#] = 155.86; Chi [#] = 330.6; eterogeneity: Tau [#] = 155.	46.4 39.7 40.9 22.1 df = 3 (P = 1) 3 26.2 29.1 26.2 29.1 26.2 16.43 52.76 = 1 (P = 1) (P = 1) 28.5 21.9 14.61 28.5 6.8 df = 3 (P 7, df = 1)	4.4 4.8 14.34 < 0.0001; 5 10.7 3.5 3.79 0.84); ² = 12.16 20.58 0.65); ² = 12.66 13.1 9.5 < 0.0001;	$\begin{array}{c} 15 \\ 15 \\ 2 \\ 100 \\ \end{array}, ^{\mu} = 8 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 30 \\ 75 \\ 33 \\ 88 \\ 0\% \\ \begin{array}{c} 64 \\ 55 \\ 2 \\ 64 \\ 198 $	59 59 59 59 57 57 8 57.8 57.8 57.8 89.7 21.7 23 1.98 1 23 21 7%	5.1 5.1 15.6 6.1 6.1 6.1 6.1 34.4 13.2 21.41	15 15 55 100 15 15 15 30 75 55 32 87 69 55 69 55 69 55 208	7.5% 7.2% 29.3% 7.4% 7.2% 7.5% 61% 28.1% 7.3% 6.5% 13.7% 7.4% 7.4% 28.8%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -14.24 [-2] -30.60 [-34 -28.70 [-34 -31.60 [-35 -28.00 [-40 -30.68 [-33. -5.27 [-1 -2.58 [- -4.68 [- -1.10 [-7.37 [-1 -3.77 [-1	71, -15.8; .64, -14.5; 0.21, 0.9; 0.21, -8.2; 0.21, -8.2; .59, -26.6; .93, -22.4; .16, -28.0; .38, -15.2; .07, -28.2; 10.69, 0.1; 2.79, 7.6; -9.47, 0.1; -5.43, 3.2; 3.17, -1.5; [1.03, 9.9; 2.31, -6.0; 1.22, 3.6;	a) 2012 b) 2012 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2012 c) 2014 a) 2017 c) 2014 a) 2017 c) 2014 a) 2014 a) 2014 a) 2018	
undog et al. 2012 (IFC 180Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2014 (Moxibustion) bitotal (95% Cl) eterogeneity: Tau ^a = 31.18; Chi ^a = 21.38, (st for overall effect: Z = 4.67 (P < 0.0001 2.2 WOMAC Physical Function, 4 weeks undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 40Hz) undog et al. 2012 (IFC 100Hz) agnato et al. 2016 (PEMF) ubtotal (95% Cl) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.83, df = ast for overall effect: Z = 25.08 (P < 0.0000 2.3 WOMAC Physical Function, 6 weeks hao et al. 2017 (Hydrotherapy) ubtotal (95% Cl) eterogeneity: Tau ^a = 0.00; Chi ^a = 0.21, df = st for overall effect: Z = 1.91 (P = 0.06) 2.4 WOMAC Physical Function, 12 week inman et al. 2014 (Moxibustion) inman et al. 2014 (Moxibustion)	45.4 39.7 40.9 22.1 df = 3 (P 22.1 df = 3 (P 29.1 26.2 61.7 = 3 (P = 1 16.43 52.76 = 1 (P = 1 28.5 6.8 df = 3 (P 7, df = 1)	4.4 4.8 14.34 < 0.0001; 5 10.7 3.5 3.79 0.84); * = 12.16 20.58 0.65); * = 12.66 13.1 9.5 < 0.0001; 3 (P < 0.0	$\begin{array}{c} 15 \\ 15 \\ 2 \\ 100 \\ \vdots \ ^{\mu} = 8 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 30 \\ 0\% \\ 64 \\ 255 \\ 2 \\ 64 \\ 15 \\ 198 \\ \vdots \ ^{\mu} = 8 \\ 64 \\ 26 \\ 15 \\ 198 \\ \vdots \ ^{\mu} = 8 \\ 64 \\ 15 \\ 198 \\ 0\% \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 1$	59 59 59 57 57 57 57 8 57 8 57 8 57 8 9 7 21 7 5 34 23 21 23 21 7%	5.1 5.1 15.6 6.1 6.1 6.1 34.4 13.2 17.94 13.2 12.9	15 15 55 100 15 15 15 30 75 55 32 87 69 55 69 55 69 55 208	7.5% 7.2% 29.3% 7.4% 7.2% 7.5% 61% 28.1% 7.3% 6.5% 13.7% 7.4% 7.4% 28.8%	-19.30 [-22 -18.10 [-21 -4.61 [-1 -14.24 [-2] -30.60 [-34 -28.70 [-34 -31.60 [-35 -28.00 [-40 -30.68 [-33. -5.27 [-1 -2.58 [- -4.68 [- -1.10 [-7.37 [-1 -3.77 [-1	71, -15.8; .64, -14.5; 0.21, 0.9; 0.21, -8.2; 0.21, -8.2; .59, -26.6; .93, -22.4; .16, -28.0; .38, -15.2; .07, -28.2; 10.69, 0.1; 2.79, 7.6; -9.47, 0.1; -5.43, 3.2; 3.17, -1.5; [1.03, 9.9; 2.31, -6.0; 1.22, 3.6;	a) 2012 b) 2012 c) 2014 c) 2014 c) 2014 c) 2014 c) 2014 c) 2012 c) 2014 a) 2017 c) 2014 a) 2017 c) 2014 a) 2014 a) 2014 a) 2018	+ + + + + + + + + + + + + + + + + + +

FIGURE 5. Forest plot of the effect of Acupuncture, Hydrotherapy, IFC (40, 100 and 180 Hz), Laser, Moxibustion, PEMF and Resistance Training in WOMAC physical function and pain, at week 3, 4, 6 and 12;

The green squares indicate the effect size of each study. The transverse lines show the 95% CI of the study. Black diamond represents the pooled estimate of every subgroup and the total effect;

Abbreviations: CI, Confidence Interval; IFC, Interferential Current; IV, Inverse Variance; PEMF, Pulsed Electromagnetic Fields; SD, Standardized Errors; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.

mechanisms by which Moxibustion may work^{91,109}. Moxibustion treatment is similar to acupuncture in principle, however the surface of the skin is only stimulated with heat at acupoints^{91,109}. One of the most widely accepted mechanisms responsible for reaching positive results is the correct stimulation of acupoints, where a 2012 systematic review already confirmed that the stimulation of acupoints with needles relieves pain and improves function in knee OA patients¹¹⁰. However, in our study, acupuncture reaches mixed results, since the Hinman et al.68 study showed significant statistical differences (P<0.05) between the needle group and the control group in the pain (short and long-term) and WOMAC (short-term) outcomes, while in the Chen et al.⁵⁴ no significant statistical differences (P>0.05) between the needle group and the sham needle group were found in all evaluated outcomes. Although the results point to a positive effect, their use cannot be fully recommended. The other Moxibustion mechanism that also creates consensus is the thermal stimulation, which might activate the sensory nervous system (thermoreceptors) through peripheral nerves such as C fibers and A delta fibers, transmitting sensory input to the central nerve system, which activates neurons to release beta endorphins and other neurotransmitters^{91,109}. Meanwhile, the afferent sensory input triggers the descending inhibitory pathway to the spinal level to intercept the pain signal^{91,109,111}. Also, the heat might dilatate blood vessels, increase blood circulation and degranulate local mast cells^{91,109}. These may be the same mechanisms that explain the effects (pain and joint stiffness decreasing, and joint function improving) achieved by Mudpack⁸⁵ and deep heat⁸¹ interventions. Additionally, Moxibustion is a relatively safe intervention (only skin flushing is observed, however it disappeared within 3 days), so its use can be recommended, following previous systematic reviews^{109,112}.

Electrotherapy interventions exhibited diverse effects. After the IFC intervention, patients improved the outcomes overtime, especially pain and function^{45,66}, even when compared to their placebo intervention⁶⁶. However, compared to its placebo intervention plus Exercise, IFC did not show significant statistical differences (P>0.05)⁴⁵. The same study⁴⁵ and the Palmer et al.⁷⁸ study also reinforced the positive impact of exercise on the patient life, as the TENS intervention obtained the same pattern as IFC, where the active TENS group, although the evaluated outcomes have improved overtime, it did not show significant statistical differences (P>0.05) comparing with sham TENS plus

Exercise or even with Exercise alone. Furthermore, the Mascarin et al.⁷⁴ study also confirms that including TENS to Exercise is not more beneficial than Exercise alone, and even comparing with a group that was intervened with US plus Exercise, the TENS group was only better in the WOMAC physical function and total scores (P<0.05). This lack of positive effects using US is reinforced by the Anwer et al.⁴³, Ulus et al.⁸⁶ and Cakir et al.⁵² studies, as active US was not better than the sham US or the control groups. Similarly, Mutlu et al.⁷⁶ compared different Musculoskeletal Manipulations (MM) (active and passive mobilization) against Electrotherapy (TENS plus US) as an adjunct interventions to Exercise and find that 12 sessions of active or passive mobilizations had a better long-term results (1 year) that just Electrotherapy, especially in knee flexion and extension (P<0.05). Abbott et al. ⁴⁰ also confirms this long-term results however, of all evaluated outcomes, significant statistical differences (P<0.05) were only obtained in WOMAC comparing with the other groups (the differences between the authors may be explained by the protocols used and the physical therapists years of experience ³⁶). Other systematic reviews confirm the positive effects of MM in knee OA patients and propose that the neurophysiological effects through activating type II mechanoreceptors (inhibiting of type IV nociceptors, resulting in pain reduction) and the enhance of the Golgi tendon organ activity (causing muscle relaxation via reflex inhibition) are the main responsible mechanisms for reaching positive results^{36,113,114}.

Shock Wave Therapy⁶⁹, Focal Muscle Vibration⁸² and Pulsed Electromagnetic Field Therapy (PEMF)⁴⁸, showed to be powerful interventions (P<0.05) comparing with their placebo version. However, despite these effects, it is imprudent to recommend their use based on just one RCT on each intervention. None of the studies compared its use with Exercise or as a complement therapy to Exercise, so it is necessary to develop more high-quality studies that approach these interventions. Taking into consideration other systematic reviews^{28,115}, from the earlier mentioned interventions, the PEMF seems to be the most promising and consistent therapy in order to improve the patient's outcomes¹¹⁵. The explanation to these positive results relays on the subsensory-threshold pulsed electric potentials that stimulate intrinsic potentials, which alter the homoeostatic balance of cartilage matrix degradation and synthesis in favor of cartilage repair¹¹⁵. This electrical stimulation increases cartilage synthesis by

down regulation of interleukin-1 and up regulation of transforming growth factor beta which lead to increased aggrecan, type II collagen, and proteoglycan content in the cartilage matrix and enhanced chondrocyte proliferation¹¹⁵. Regarding the use of Laser Therapy, the studies point out the benefit of High Level Laser Therapy compared to Low Level Laser Therapy (LLLT)⁷⁰ which, as well, did not show a long-term efficacy^{41,68}, confirming the results of earlier systematic reviews^{116,117}.

Kinesio Taping (KT) obtained poor effects, with the intervention group not being significantly better (P>0.05) compared to the control group^{47,87} in all evaluated outcomes (except for pain)⁷⁷. Those poor and dispersed results were similar to those reported in an earlier systematic review ¹¹⁸.

Compared to the previous known umbrella review regarding the use of non-surgical and non-pharmacological interventions for knee OA patients²², our systematic review confirms that Exercise (especially Resistance Training) is a useful intervention on these patients and reinforces the use of Moxibustion, IFC, PEMF and MM. Acupuncture, US, LLLT, Mudpack Therapy, KT and TENS achieved heterogeneous results, which may be explained by the larger number of studies and enrolled patients.

The main limitation of this systematic review was the small number of high-quality studies founded for each intervention, with different protocols.

CONCLUSION

This systematic review and meta-analysis demonstrated that Exercise had the best positive effects on knee OA patients. Besides Exercise, PEMF and Moxibustion showed to be the most promising intervention relatively to the others. Balance Training, Diet, Diathermy, Hydrotherapy, High Level Laser Therapy, IFC, Mudpack, NEMS, MM, Shock Wave Therapy, Focal Muscle Vibration, stood out, however more studies are needed to fully recommend their use. Other interventions did not show to be effective or the results obtained were heterogeneous.

CORRESPONDENCE TO Ricardo Ferreira Avenida Carlos de Oliveira Campos E-mail: rferreira@ipmaia.pt

REFERENCES

1. Neogi T and Zhang Y. Epidemiology of osteoarthritis. Rheuma-

tic Disease Clinics of North America 2013; 39: 1-19.

- 2. Baum T, Joseph G, Karampinos D, et al. Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthritis and Cartilage 2013; 21: 1474-1484.
- 3. Finan PH, Buenaver LF, Bounds SC, et al. Discordance between pain and radiographic severity in knee osteoarthritis: Findings from quantitative sensory testing of central sensitization. Arthritis & Rheumatology 2013; 65: 363-372.
- Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: New insights. Part 1: The disease and its risk factors. Annals of Internal Medicine 2000; 133: 635-646.
- Sakalauskiene G and Jauniskiene D. Osteoarthritis: etiology, epidemiology, impact on the individual and society and the main principles of management. Medicina (Kaunas) 2010; 46: 790-797.
- Martel-Pelletier J and Pelletier J-P. Is osteoarthritis a disease involving only cartilage or other articular tissues? Eklem Hastalik Cerrahisi 2010; 21: 2-14.
- Felson DT and Hodgson R. Identifying and treating preclinical and early osteoarthritis. Rheumatic Disease Clinics of North America 2014; 40: 699-710.
- 8. WHO. The Global Burden of Disease: 2004 update, http://www.who.int (2004).
- Scott D, Shipley M, Dawson A, et al. The clinical management of rheumatoid arthritis and osteoarthritis: Strategies for improving clinical effectiveness. British Journal of Rheumatology 1998; 37: 546-554.
- Anderson AS and Loeser RF. Why is osteoarthritis an age-related disease? Best Practice & Research Clinical Rheumatology 2010; 24: 15-26.
- Alnahdi AH, Zeni JA and Snyder-Mackler L. Muscle impairments in patients with knee osteoarthritis. Sports Health 2012; 4: 284-292.
- 12. Peat G, McCarney R and Croft P. Knee pain and osteoarthritis in older adults: A review of community burden and current use of primary health care. Annals of the Rheumatic Diseases 2001; 60: 91-97.
- McAlindon T, Snow S, Cooper C, et al. Radiographic patterns of osteoarthritis of the knee joint in the community: The importance of the patellofemoral joint. Annals of the Rheumatic Diseases 1992; 51: 844-849.
- Michael J, Schlüter-Brust KU and Eysel P. The epidemiology, etiology, diagnosis, and treatment of osteoarthritis of the knee. Deutsches Ärzteblatt International 2010; 107: 152-162.
- Pereira D, Peleteiro B, Araujo J, et al. The effect of osteoarthritis definition on prevalence and incidence estimates: A systematic review. Osteoarthritis and Cartilage 2011; 19: 1270-1285.
- Thomas E, Peat G and Croft P. Defining and mapping the person with osteoarthritis for population studies and public health. Rheumatology 2013: 338-345.
- 17. Nelson AE, Allen KD, Golightly YM, et al. A systematic review of recommendations and guidelines for the management of osteoarthritis: The chronic osteoarthritis management Initiative of the US bone and joint initiative. In: Seminars in Arthritis and Rheumatism 2014, pp.701-712. Elsevier.
- Sinkov V and Cymet T. Osteoarthritis: Understanding the pathophysiology, genetics, and treatments. Journal of the National Medical Association 2003; 95: 475-482.
- 19. Sinusas K. Osteoarthritis: Diagnosis and treatment. American Family Physician 2012; 85: 49-56.
- 20. Bruyère O, Cooper C, Pelletier J-P, et al. An algorithm recom-

mendation for the management of knee osteoarthritis in Europe and internationally: A report from a task force of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). In: Seminars in Arthritis and Rheumatism 2014, pp.253-263. Elsevier.

- 21. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine 2009; 151: 264-269.
- 22. Ferreira R, Duarte J and Gonçalves R. Non-pharmacological and non-surgical interventions to manage patients with knee osteoarthritis: an umbrella review. Acta Reumatológica Portuguesa 2018.
- 23. Arksey H and O'Malley L. Scoping studies: towards a methodological framework. International journal of social research methodology 2005; 8: 19-32.
- Bellamy N, Kirwan J, Boers M, et al. Recommendations for a core set of outcome measures for future phase III clinical trials in knee, hip, and hand osteoarthritis. Consensus development at OMER-ACT III. The Journal of Rheumatology 1997; 24: 799-802.
- 25. de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Australian Journal of Physiotherapy 2009; 55: 129-133.
- 26. Maher CG, Sherrington C, Herbert RD, et al. Reliability of the PEDro scale for rating quality of randomized controlled trials. Physical Therapy 2003; 83: 713-721.
- Moseley AM, Herbert RD, Sherrington C, et al. Evidence for physiotherapy practice: A survey of the Physiotherapy Evidence Database (PEDro). Australian Journal of Physiotherapy 2002; 48: 43-49.
- We SR, Koog YH, Jeong K-I, et al. Effects of pulsed electromagnetic field on knee osteoarthritis: A systematic review. Rheumatology 2013; 52: 815-824.
- 29. Wallis JA and Taylor NF. Pre-operative interventions (non-surgical and non-pharmacological) for patients with hip or knee osteoarthritis awaiting joint replacement surgery – A systematic review and meta-analysis. Osteoarthritis and Cartilage 2011; 19: 1381-1395.
- Romeo A, Parazza S, Boschi M, et al. Manual therapy and therapeutic exercise in the treatment of osteoarthritis of the hip: A systematic review. Reumatismo 2013; 65: 63-74.
- 31. Warden SJ, Hinman RS, Watson MA, et al. Patellar taping and bracing for the treatment of chronic knee pain: A systematic review and meta analysis. Arthritis Care & Research 2008; 59: 73-83.
- 32. Zacharias A, Green RA, Semciw A, et al. Efficacy of rehabilitation programs for improving muscle strength in people with hip or knee osteoarthritis: A systematic review with meta-analysis. Osteoarthritis and Cartilage 2014; 22: 1752-1773.
- 33. Tanaka R, Ozawa J, Kito N, et al. Does exercise therapy improve the health-related quality of life of people with knee osteoarthritis? A systematic review and meta-analysis of randomized controlled trials. Journal of Physical Therapy Science 2015; 27: 3309-3314.
- 34. Wang P, Yang X, Yang Y, et al. Effects of whole body vibration on pain, stiffness and physical functions in patients with knee osteoarthritis: A systematic review and meta-analysis. Clinical Rehabilitation 2015; 29: 939-951.
- 35. Ye J, Cai S, Zhong W, et al. Effects of tai chi for patients with knee osteoarthritis: A systematic review. Journal of Physical Therapy Science 2014; 26: 1133-1137.
- 36. Xu Q, Chen B, Wang Y, et al. The effectiveness of manual therapy for relieving pain, stiffness, and dysfunction in knee os-

teoarthritis: A systematic review and meta-analysis. Pain Physician 2017; 20: 229-243.

- Guyatt GH, Oxman AD, Kunz R, et al. Rating quality of evidence and strength of recommendations: Going from evidence to recommendations. BMJ: British Medical Journal 2008; 336: 1049.
- 38. Cohen J. A power primer. Psychological bulletin 1992; 112: 155.
- 39. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ: British Medical Journal 2003; 327: 557.
- Abbott JH, Chapple CM, Fitzgerald GK, et al. The incremental effects of manual therapy or booster sessions in addition to exercise therapy for knee osteoarthritis: A randomized clinical trial. Journal of Orthopaedic & Sports Physical Therapy 2015; 45: 975-983.
- Alfredo PP, Bjordal JM, Dreyer SH, et al. Efficacy of low level laser therapy associated with exercises in knee osteoarthritis: A randomized double-blind study. Clinical Rehabilitation 2012; 26: 523-533.
- 42. Altinbilek T, Murat S, Yumu akhuylu Y, et al. Osteopathic manipulative treatment improves function and relieves pain in knee osteoarthritis: A single-blind, randomized-controlled trial. Turkish Journal of Physical Medicine & Rehabilitation 2018; 64.
- 43. Anwer S and Alghadir A. Effect of isometric quadriceps exercise on muscle strength, pain, and function in patients with knee osteoarthritis: A randomized controlled study. Journal of Physical Therapy Science 2014; 26: 745-748.
- 44. Apparao P, Sandeep G, Sudhakar S, et al. Effectiveness of stabilization exercises and conventional physiotherapy in subjects with knee osteoarthritis. International Journal of Research in Pharmaceutical Sciences 2017; 8: 542-548.
- 45. Atamaz FC, Durmaz B, Baydar M, et al. Comparison of the efficacy of transcutaneous electrical nerve stimulation, interferential currents, and shortwave diathermy in knee osteoarthritis: A double-blind, randomized, controlled, multicenter study. Archives of Physical Medicine and Rehabilitation 2012; 93: 748-756.
- 46. Atkins DV and Eichler DA. The effects of self-massage on osteoarthritis of the knee: A randomized, controlled trial. International Journal of Therapeutic Massage & Bodywork 2013; 6: 1-4.
- 47. Aydoğdu O, Sari Z, Yurdalan SU, et al. Clinical outcomes of kinesio taping applied in patients with knee osteoarthritis: A randomized controlled trial. Journal of back and musculoskeletal rehabilitation 2017; 30: 1045-1051.
- Bagnato GL, Miceli G, Marino N, et al. Pulsed electromagnetic fields in knee osteoarthritis: A double blind, placebo-controlled, randomized clinical trial. Rheumatology 2016; 55: 755-762.
- 49. Bennell KL, Kyriakides M, Hodges PW, et al. Effects of two physiotherapy booster sessions on outcomes with home exercise in people with knee osteoarthritis: A randomized controlled trial. Arthritis Care & Research 2014; 66: 1680-1687.
- Bennell KL, Kyriakides M, Metcalf B, et al. Neuromuscular versus quadriceps strengthening exercise in patients with medial knee osteoarthritis and varus malalignment: A randomized controlled trial. Arthritis & Rheumatology 2014; 66: 950-959.
- 51. Bruce-Brand RA, Walls RJ, Ong JC, et al. Effects of home-based resistance training and neuromuscular electrical stimulation in knee osteoarthritis: A randomized controlled trial. BMC Musculoskeletal Disorders 2012; 13: 118-128.
- 52. Cakir S, Hepguler S, Ozturk C, et al. Efficacy of therapeutic ultrasound for the management of knee osteoarthritis: a randomized, controlled, and double-blind study. American journal of physical medicine & rehabilitation 2014; 93: 405-412.
- 53. Chang T-F, Liou T-H, Chen C-H, et al. Effects of elastic-band

exercise on lower-extremity function among female patients with osteoarthritis of the knee. Disability and rehabilitation 2012; 34: 1727-1735.

- 54. Chen LX, Mao JJ, Fernandes S, et al. Integrating acupuncture with exercise-based physical therapy for knee osteoarthritis: A randomized controlled trial. Journal of Clinical Rheumatology 2013; 19: 308-316.
- 55. Cheung C, Wyman JF, Resnick B, et al. Yoga for managing knee osteoarthritis in older women: a pilot randomized controlled trial. BMC complementary and alternative medicine 2014; 14: 160.
- 56. Cho H-y, Kim E-H, Kim J, et al. Kinesio taping improves pain, range of motion, and proprioception in older patients with knee osteoarthritis: a randomized controlled trial. American journal of physical medicine & rehabilitation 2015; 94: 192-200.
- 57. Christensen R, Henriksen M, Leeds AR, et al. Effect of weight maintenance on symptoms of knee osteoarthritis in obese patients: A twelve month randomized controlled trial. Arthritis Care & Research 2015; 67: 640-650.
- 58. Coleman S, Briffa NK, Carroll G, et al. A randomised controlled trial of a self-management education program for osteoarthritis of the knee delivered by health care professionals. Arthritis Research & Therapy 2012; 14: 1-14.
- 59. de Oliveira Melo M, Pompeo KD, Baroni BM, et al. Effects of neuromuscular electrical stimulation and low-level laser therapy on neuromuscular parameters and health status in elderly women with knee osteoarthritis: A randomized trial. Journal of Rehabilitation Medicine 2016; 48: 293-299.
- 60. DeVita P, Aaboe J, Bartholdy C, et al. The effect of quadricepsstrengthening exercise on quadriceps and knee biomechanics during walking in knee osteoarthritis: A two-centre randomized controlled trial. Clinical Biomechanics 2018.
- 61. Dias JM, Cisneros L, Dias R, et al. Hydrotherapy improves pain and function in older women with knee osteoarthritis: a randomized controlled trial. Brazilian journal of physical therapy 2017; 21: 449-456.
- 62. Ebnezar J, Nagarathna R, Yogitha B, et al. Effects of an integrated approach of hatha yoga therapy on functional disability, pain, and flexibility in osteoarthritis of the knee joint: A randomized controlled study. The Journal of Alternative and Complementary Medicine 2012; 18: 463-472.
- 63. Elboim-Gabyzon M, Rozen N and Laufer Y. Does neuromuscular electrical stimulation enhance the effectiveness of an exercise programme in subjects with knee osteoarthritis? A randomized controlled trial. Clinical rehabilitation 2013; 27: 246-257.
- 64. Fazaa A, Souabni L, Abdelghani KB, et al. Comparison of the clinical effectiveness of thermal cure and rehabilitation in knee osteoarthritis. A randomized therapeutic trial. Annals of Physical and Rehabilitation Medicine 2014; 57: 561-569.
- 65. Gomiero AB, Kayo A, Abraão M, et al. Sensory-motor training versus resistance training among patients with knee os-teoarthritis: randomized single-blind controlled trial. Sao Paulo Medical Journal 2017: 0-0.
- 66. Gundog M, Atamaz F, Kanyilmaz S, et al. Interferential current therapy in patients with knee osteoarthritis: comparison of the effectiveness of different amplitude-modulated frequencies. American journal of physical medicine & rehabilitation 2012; 91: 107-113.
- 67. Henriksen M, Klokker L, Graven Nielsen T, et al. Association of exercise therapy and reduction of pain sensitivity in patients with knee osteoarthritis: A randomized controlled trial. Arthritis Care & Research 2014; 66: 1836-1843.

- Hinman RS, McCrory P, Pirotta M, et al. Acupuncture for chronic knee pain: a randomized clinical trial. Jama 2014; 312: 1313-1322.
- 69. Imamura M, Alamino S, Hsing WT, et al. Radial extracorporeal shock wave therapy for disabling pain due to severe primary knee osteoarthritis. Journal of Rehabilitation Medicine 2017; 49: 54-62.
- Kheshie AR, Salaheldien M, Alayat M, et al. High-intensity versus low-level laser therapy in the treatment of patients with knee osteoarthritis: a randomized controlled trial. Lasers in Medical Science 2014; 29: 1371-1376.
- 71. Kim T-H, Kim KH, Kang JW, et al. Moxibustion treatment for knee osteoarthritis: A multi-centre, non-blinded, randomised controlled trial on the effectiveness and safety of the moxibustion treatment versus usual care in knee osteoarthritis patients. PloS One 2014; 9: 1-8.
- 72. Knoop J, Dekker J, Van der Leeden M, et al. Knee joint stabilization therapy in patients with osteoarthritis of the knee: A randomized, controlled trial. Osteoarthritis and Cartilage 2013; 21: 1025-1034.
- Laufer Y, Shtraker H and Gabyzon ME. The effects of exercise and neuromuscular electrical stimulation in subjects with knee osteoarthritis: A 3-month follow-up study. Clinical Interventions in Aging 2014; 9: 1153-1161.
- 74. Mascarin NC, Vancini RL, dos Santos Andrade M, et al. Effects of kinesiotherapy, ultrasound and electrotherapy in management of bilateral knee osteoarthritis: Prospective clinical trial. BMC Musculoskeletal Disorders 2012; 13: 182-191.
- 75. Mizusaki Imoto A, Peccin S, Gomes da Silva KN, et al. Effects of neuromuscular electrical stimulation combined with exercises versus an exercise program on the pain and the function in patients with knee osteoarthritis: A randomized controlled trial. BioMed Research International 2013; 2013: 1-7.
- 76. Mutlu EK, Ercin E, Ozdincler AR, et al. A comparison of two manual physical therapy approaches and electrotherapy modalities for patients with knee osteoarthritis: A randomized three arm clinical trial. Physiotherapy theory and practice 2018; 34: 600-612.
- 77. Mutlu EK, Mustafaoglu R, Birinci T, et al. Does Kinesio taping of the knee improve pain and functionality in patients with knee osteoarthritis?: a randomized controlled clinical trial. American journal of physical medicine & rehabilitation 2017; 96: 25-33.
- Palmer S, Domaille M, Cramp F, et al. Transcutaneous electrical nerve stimulation as an adjunct to education and exercise for knee osteoarthritis: A randomized controlled trial. Arthritis Care & Research 2014; 66: 387-394.
- Parekh S and Vaghela N. Immediate effect of taping in physical performance of osteoarthritis of knee joint. National Journal of Physiology, Pharmacy and Pharmacology 2018; 8: 470-474.
- 80. Peungsuwan P, Sermcheep P, Harnmontree P, et al. The effectiveness of Thai exercise with traditional massage on the pain, walking ability and QOL of older people with knee osteoarthritis: a randomized controlled trial in the community. Journal of physical therapy science 2014; 26: 139-144.
- 81. Rabini A, Piazzini D, Tancredi G, et al. Deep heating therapy via microwave diathermy relieves pain and improves physical function in patients with knee osteoarthritis: A double-blind randomized clinical trial. European Journal of Physical and Rehabilitation Medicine 2012; 48: 549-559.
- 82. Rabini A, De Sire A, Marzetti E, et al. Effects of focal muscle vibration on physical functioning in patients with knee osteoarthritis: A randomized controlled trial. European Journal of

Physical and Rehabilitation Medicine 2015; 51: 513-520.

- 83. Rahlf AL, Braumann K-M and Zech A. Kinesio Taping Improves Perceptions of Pain and Function of Patients with Knee Osteoarthritis. A Randomized, Controlled Trial. Journal of sport rehabilitation 2018: 1-21.
- 84. Taglietti M, Facci LM, Trelha CS, et al. Effectiveness of aquatic exercises compared to patient-education on health status in individuals with knee osteoarthritis: a randomized controlled trial. Clinical rehabilitation 2018: 0269215517754240.
- 85. Tefner IK, Gaál R, Koroknai A, et al. The effect of Neydharting mud-pack therapy on knee osteoarthritis: a randomized, controlled, double-blind follow-up pilot study. Rheumatology international 2013; 33: 2569-2576.
- 86. Ulus Y, Tander B, Akyol Y, et al. Therapeutic ultrasound versus sham ultrasound for the management of patients with knee osteoarthritis: a randomized double blind controlled clinical study. International journal of rheumatic diseases 2012; 15: 197-206.
- 87. Wageck B, Nunes GS, Bohlen NB, et al. Kinesio Taping does not improve the symptoms or function of older people with knee osteoarthritis: A randomised trial. Journal of Physiotherapy 2016; 62: 153-158.
- Waller B, Munukka M, Rantalainen T, et al. Effects of high intensity resistance aquatic training on body composition and walking speed in women with mild knee osteoarthritis: a 4month RCT with 12-month follow-up. Osteoarthritis and cartilage 2017; 25: 1238-1246.
- Wang C, Schmid CH, Iversen MD, et al. Comparative Effectiveness of Tai Chi Versus Physical Therapy for Knee Osteoarthritis: A Randomized Trial. Annals of Internal Medicine 2016; 165: 77-86.
- Yeğin T, Altan L and Aksoy MK. The Effect of Therapeutic Ultrasound on Pain and Physical Function in Patients with Knee Osteoarthritis. Ultrasound in medicine & biology 2017; 43: 187-194.
- 91. Zhao L, Cheng K, Wang L, et al. Effectiveness of moxibustion treatment as adjunctive therapy in osteoarthritis of the knee: A randomized, double-blinded, placebo-controlled clinical trial. Arthritis Research & Therapy 2014; 16: 1-8.
- Uthman OA, van der Windt DA, Jordan JL, et al. Exercise for lower limb osteoarthritis: Systematic review incorporating trial sequential analysis and network meta-analysis. Briths Medical Journal 2013; 347: 1-13.
- 93. Juhl C, Christensen R, Roos EM, et al. Impact of exercise type and dose pain and disability in knee osteoarthritis: A systematic review and meta regression analysis of randomized controlled trials. Arthritis & Rheumatology 2014; 66: 622-636.
- Fransen M, McConnell S, Harmer AR, et al. Exercise for osteoarthritis of the knee. Cochrane Database Systematic Reviews 2015; 4: 1-144.
- 95. Li Y, Su Y, Chen S, et al. The effects of resistance exercise in patients with knee osteoarthritis: A systematic review and metaanalysis. Clinical Rehabilitation 2016; 30: 947-959.
- 96. Tanaka R, Ozawa J, Kito N, et al. Effect of the frequency and duration of land-based therapeutic exercise on pain relief for people with knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials. Journal of Physical Therapy Science 2014; 26: 969-975.
- Folland JP and Williams AG. Morphological and neurological contributions to increased strength. Sports medicine 2007; 37: 145-168.
- 98. Peterson MD, Rhea MR and Alvar BA. Applications of the dose-response for muscular strength development: a review of meta-an-

alytic efficacy and reliability for designing training prescription. Journal of Strength and Conditioning Research 2005; 19: 950.

- 99. Schoenfeld BJ, Wilson JM, Lowery RP, et al. Muscular adaptations in low-versus high-load resistance training: A meta-analysis. European journal of sport science 2016; 16: 1-10.
- Koltyn KF. Analgesia following exercise. Sports medicine 2000; 29: 85-98.
- 101. Koltyn KF and Umeda M. Exercise, hypoalgesia and blood pressure. Sports medicine 2006; 36: 207-214.
- 102. Aspden R. Osteoarthritis: a problem of growth not decay? Rheumatology 2008; 47: 1452-1460.
- 103. Gardiner BS, Woodhouse FG, Besier TF, et al. Predicting knee osteoarthritis. Annals of biomedical engineering 2016; 44: 222-233.
- 104. Stemberger R and Kerschan-Schindl K. Osteoarthritis: Physical medicine and rehabilitation — Nonpharmacological management. Wiener Medizinische Wochenschrift 2013; 2013: 228-235.
- 105. Diracoglu D, Aydin R, Baskent A, et al. Effects of kinesthesia and balance exercises in knee osteoarthritis. JCR: Journal of Clinical Rheumatology 2005; 11: 303-310.
- 106. Fitzgerald GK, Piva SR, Gil AB, et al. Agility and perturbation training techniques in exercise therapy for reducing pain and improving function in people with knee osteoarthritis: a randomized clinical trial. Physical therapy 2011; 91: 452-469.
- 107. Felson DT. Osteoarthritis of the knee. New England Journal of Medicine 2006; 354: 841-848.
- 108. Hall M, Castelein B, Wittoek R, et al. Diet-induced weight loss alone or combined with exercise in overweight or obese people with knee osteoarthritis: a systematic review and meta-analysis. In: Seminars in Arthritis and Rheumatism 2018, Elsevier.
- 109. Li A, Wei Z-J, Liu Y, et al. Moxibustion treatment for knee osteoarthritis: A systematic review and meta-analysis. Medicine 2016; 95: 1-9. DOI: 10.1097/MD.00000000003244.
- 110. Cao L, Zhang X-L, Gao Y-S, et al. Needle acupuncture for osteoarthritis of the knee. A systematic review and updated metaanalysis. Saudi Medical Journal 2012; 33: 526-532.
- 111. Melzack R and Wall PD. Pain mechanisms: a new theory. Survey of Anesthesiology 1967; 11: 89-90.
- 112. Song G-M, Tian X, Jin Y-H, et al. Moxibustion is an alternative in treating knee osteoarthritis: The evidence from systematic review and meta-analysis. Medicine 2016; 95: 1-11.
- 113. Anwer S, Alghadir A, Zafar H, et al. Effects of orthopaedic manual therapy in knee osteoarthritis: a systematic review and meta-analysis. Physiotherapy 2018.
- 114. French H, Brennan A, White B, et al. Manual therapy for osteoarthritis of the hip or knee – A systematic review. Manual Therapy 2011; 16: 109-117.
- 115. Negm A, Lorbergs A and Macintyre N. Efficacy of low frequency pulsed subsensory threshold electrical stimulation vs placebo on pain and physical function in people with knee osteoarthritis: Systematic review with meta-analysis. Osteoarthritis and Cartilage 2013; 21: 1281-1289.
- 116. Huang Z, Chen J, Ma J, et al. Effectiveness of low-level laser therapy in patients with knee osteoarthritis: A systematic review and meta-analysis. Osteoarthritis and Cartilage 2015; 23: 1437-1444.
- 117. Wyszy ska J and Bal-Boche ska M. Efficacy of High-Intensity Laser Therapy in Treating Knee Osteoarthritis: A First Systematic Review. Photomedicine and laser surgery 2018.
- 118. Li X, Zhou X, Howe Liu NC, et al. Effects of elastic therapeutic taping on knee osteoarthritis: a systematic review and metaanalysis. Aging and disease 2018; 9: 296.

TABLE II. METHODOLOGICAL QUALITY OF ELIGIBLE STUDIES (N = 52)

												PEDro	
Study	_		-				Items					Score	GRADE
(A to Z and year)	1a	2	3	4	5	6	7	8	9	10	11	(0 – 10)	(A to D)
Alfredo et al. ⁴¹	Y	Y	Y	Y	N	N	Y	Y	Y	Y	Y	8	B
Atamaz et al.45	Ν	Y	Y	Y	Y	N	Y	Y	Y	Y	Y	9	A
Bruce-Brand et al. ⁵¹	Y	Y	N	Y	N	N	Y	N	N	Y	Y	5	
Chang et al.53	Y	Y	N	Y	N	N	N	N	N	Y	Y	4	
Coleman et al.58	Y	Y	Y	Y	N	N	Y	Y	Y	Y	Y	8	В
Ebnezar et al. ⁶²	Y	Y	Y	Y	N	N	Y	Y	N	Y	Y	7	В
Gundog et al. ⁶⁶	Y	Y	N	Y	N	N	Y	Y	N	Y	Y	6	С
Mascarin et al. ⁷⁴	Y	Y	N	Y	N	N	Y	Y	N	Y	Y	6	С
Rabini et al. ⁸¹	Y	Y	Y	Y	N	N	Y	Y	Y	Y	Y	8	В
Ulus et al. ⁸⁶	Y	Y	Y	Y	Y	N	N	Y	N	Y	Y	7	В
Atkins et al. ⁴⁶	Y	Y	N	Y	N	N	N	Y	Ν	Y	N	4	
Chen et al.54	Y	Y	Y	Y	Y	N	Y	N	Y	Y	Y	8	В
Elboim-Gabyzon et al.63	Y	Y	Y	Y	N	N	N	N	N	Y	Y	5	
Knoop et al. ⁷²	Y	Y	Y	Y	N	N	Y	Y	Y	Y	Y	8	В
Mizusaki et al. ⁷⁵	Y	Y	Y	Y	N	Ν	Y	Y	Y	Y	Y	8	В
Tefner et al. ⁸⁵	Ν	Y	Ν	Y	Y	Ν	Y	Y	Y	Y	Y	8	В
Anwer et al.43	Ν	Y	Ν	Y	N	N	Y	Y	Ν	Y	Y	6	С
Bennell et al.49	Y	Y	Y	Y	N	N	N	Y	Y	Y	Y	7	В
Bennell et al. ⁵⁰	Y	Y	Y	Y	N	N	Y	N	Y	Y	Y	7	В
Cakir et al. ⁵²	Ν	Y	Ν	Y	Y	N	Y	Y	Ν	Y	Y	7	В
Cheung et al.55	Y	Y	Y	Y	N	N	Y	Y	Y	Y	Y	8	В
Fazaa et al. ⁶⁴	Y	Y	Ν	Y	N	Ν	Y	Ν	Ν	Y	Y	5	
Henriksen et al.67	Y	Y	Y	Y	N	Ν	Y	Ν	Ν	Y	Y	6	С
Hinman et al. ⁶⁸	Y	Y	Y	Y	N	Ν	Ν	Y	Y	Y	Y	7	В
Kheshie et al. ⁷⁰	Y	Y	Ν	Y	Y	Ν	Y	Y	Ν	Y	Y	7	В
Kim et al. ⁷¹	Y	Y	Y	Y	N	Ν	Ν	Y	Y	Y	Y	7	В
Laufer et al.73	Y	Y	Y	Y	Ν	Ν	Ν	Ν	Ν	Y	Y	5	
Palmer et al. ⁷⁸	Y	Y	Y	Y	N	Ν	Y	Y	Y	Y	Y	8	В
Peungsuwan et al. ⁸⁰	Y	Y	Ν	Y	N	Ν	Ν	Ν	Ν	Y	Y	4	
Zhao et al. ⁹¹	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	10	А
Abbott et al.40	Y	Y	Y	Y	N	Ν	Y	Y	Y	Y	Y	8	В
Cho et al. ⁵⁶	Y	Y	Y	Y	N	Ν	Ν	Ν	Ν	Y	Y	5	
Christensen et al.57	Ν	Y	Y	Y	N	Ν	Ν	Ν	Y	Y	Y	6	С
Rabini et al. ⁸²	Y	Y	Y	Y	Y	Ν	Y	Y	Y	Y	Y	9	А
Bagnato et al.48	Y	Y	Y	Y	Y	Y	Y	Y	Ν	Y	Y	9	А
de Oliveira et al. ⁵⁹	Y	Y	Y	Y	N	Ν	Y	Y	Ν	Y	Y	7	В
Wageck et al. 87	Y	Y	Y	Y	N	Ν	Y	Y	Y	Y	Y	8	В
Wang et al. 89	Y	Y	Y	Y	N	Ν	Y	N	Y	Y	Y	7	В
Apparao et al. 44	Y	Y	Y	Y	N	Ν	Ν	Ν	Ν	Y	Y	5	
Aydoğdu et al. 47	Y	Y	Y	Y	N	N	N	Y	Ν	Y	Y	6	С
Dias et al.61	Y	Y	Y	Y	N	N	Y	Y	N	Y	Y	7	В
Imamura et al. ⁶⁹	Y	Y	Y	Y	Y	Ν	Y	Y	Y	Y	Y	9	А
Gomiero et al.65	Y	Y	Y	Y	N	N	N	Y	Y	Y	Y	7	В
Mutlu et al. 77	Y	Y	Y	Y	N	N	Y	Y	Y	Y	Y	8	В

TABLE II. CONTINUATION													
												PEDro	
Study					PEDr	o Scale	Items					Score	GRADE
(A to Z and year)	1a	2	3	4	5	6	7	8	9	10	11	(0 – 10)	(A to D)
Waller et al. ⁸⁸	Y	Y	Ν	Y	N	Ν	Ν	Y	Y	Y	Y	6	С
Yeğin et al. ⁹⁰	Y	Y	Ν	Y	N	N	N	Y	Ν	Y	Y	5	
Altınbilek et al.42	Y	Y	Ν	Y	Ν	Ν	Y	Y	Ν	Ν	Y	5	
DeVita et al.60	Y	Y	Y	Y	N	Ν	Ν	Y	Ν	Y	Y	6	С
Mutlu et al. ⁷⁶	Y	Y	Y	Y	N	N	Y	Y	Ν	Y	Y	7	В
Parekh et al. ⁷⁹	Y	Y	Ν	Y	Ν	Ν	Ν	Ν	Ν	Ν	Y	3	
Rahf et al. ⁸³	Y	Y	Y	Y	N	Ν	Ν	Ν	Ν	Y	Y	5	
Taglietti et al. ⁸⁴	Y	Y	Y	Y	N	Ν	Ν	Y	Y	Y	Y	7	В
Mode	Y	Y	Y	Y	N	Ν	Y	Y	Ν	Y	Y	7	В

1 – Eligibility criteria; 2 – Random allocation; 3 – Concealed allocation; 4 – Baseline comparability; 5 – Blind subjects; 6 – Blind therapists; 7 – Blind assessors; 8 – Adequate follow-up; 9 – Intention-to-treat analysis; 10 – Between-group comparisons; 11 – Point estimates and variability;

a – Item do not contribute to the total score;

Y – Yes; N – No.

TABLE III. INCLUDE RCT'S SUMMARIES (N = 39)

		FERREI
--	--	--------

(Authors)	Objectives	Subjects	Cohorts	Outcome Measures	Results
Acupuncture					
Acupuncture Chen et al. ⁵⁴	• To compare the efficacy and safety of integrating a standardized true acupuncture protocol versus non-penetrating acupuncture into exercise-based physical therapy.	 n_{Total}= 214 Gender: 51.4% (110) female; 48.6% (104) male; n_{Non-penetrening acupuncture}= 109 Age: 60.4±11.7 years BMI: 32.6 kg/m² Gender: 52.3% (57) female; 47.7% (52) male; n_{Acupuncture}= 104 Age: 60.5±11.1 years BMI: 33.3 kg/m² 	 Acupuncture – <i>Exercise</i> (ROM exercises + muscle strengthening + aerobic conditioning (bike and/or treadmill apparatus) – 10-20 min, 1-2 x per week, 12 total treatments + <i>Acupuncture</i> (penetrating needles placed in the knee GB 34, SP 9, ST 36, ST 35 and Xiyan, and distal points UB 60, GB 39, SP 6, and KI 3) –20 min, 1-2x per week, 12 total treatments; Non-penetrating acupuncture – <i>Exercise</i> (ROM exercises + muscle strengthening + aerobic conditioning (bike and/or treadmill apparatus)) – 10-20 min, 1-2 x per week, 12 total treatments + <i>Non-penetrating Acupuncture</i> (same procedures and 9 points described in the acupuncture group, however without penetrating) –20 min, 1-2x per week, 12 total treatments. 	 Disability – WOMAC; Function – 6 min walk test; Pain – BPI; Perception of change – PGIC; QOL – SF-36. 	• Intra-gro significantl variables.
Hinman et al. ⁶⁸	• To determine the efficacy of laser and needle acupuncture for KOA.	Gender: 51% (53) female; 49% (52) male. • n _{Total} = 282	 Needle – Acupuncture needle (usual practice using a standardized set of acupuncture points, applied a max of 6 needles (0.25x40 mm) around the knee as well as distal points) – 20 min,1-2x per week, 12 weeks; Laser acupuncture – <i>LLLT</i> (applied in the same places has the needle group (10mW and energy 0.2 J/point output)) – 20 min, 1-2x per week, 12 weeks; Sham laser acupuncture – The same procedures has the laser acupuncture group however without the laser functioning – 20 min, 1-2x per week, 12 weeks; Control – The control participants were unaware of the experiment. 	• Disability – WOMAC; • Pain – NPRS.	 Pain: Pai in compar acupunctur it was not f and the oth significant (P>0.05) at WOMAC statistical c at week 12 differences groups. Ad in between 1 year.
		Gender: 39% (28) female; 61% (43) male; • $n_{Sham laser acupuncture} = 70$ Age: 63.8 ± 7.5 years Weight: 84.7 ± 19.3 kg Height: 1.71 ± 0.1 m BMI: 28.8 ± 5.4 kg/m ² Gender: 56% (39) female; 44% (31) male; • $n_{control} = 71$ Age: 62.7 ± 8.7 years Weight: 85.6 ± 20.8 kg Height: 1.7 ± 0.11 m BMI: 29.3 ± 5.8 kg/m ² Gender: 56% (40) female; 44% (31) male.			

189

group and inter-group comparisons showed no ntly differences (P>0.05) in all evaluated

Pain was decrease significantly (P<0.05) in all groups, parison to the control, except for the Sham laser ture group (P=0.07) at week 12. However, at 1 year ot found any differences (P>0.05) between control other groups. Additionally, it was not found nt differences in between-group comparisons) at week 12 and 1 year;

AC: From all groups, only the needle group had l differences in comparison to the control (P=0.04) 12. However, at 1 year it was not found any es (P>0.05) between control and the other Additionally, it was not found significant differences en-group comparisons (P>0.05) at week 12 and

Interventions (Authors)	Objectives	Subjects	Cohorts	Outcome Measures	Results
<u>Moxibustion</u> Kim et al. ⁷¹	• To test the effect of moxibustion on the pain and function of chronic KOA patients.	 n_{total}= 212 Gender: 84.4% (179) female; 15.6% (33) male; n_{Experimental}= 102 Age: 56 years BMI: 24.8±2.6 kg/m² Gender: 83.3% (85) female; 16.7% (17) male; n_{Control}= 110 Age: 57 years BMI: 24.1±2.9 kg/m² Gender: 85.5% (94) female; 14.5% (16) male. 	• Experimental – <i>Moxibustion</i> (moxibustion, burning mug wort devices over 6 acupuncture points (ST36, ST35, ST34, SP9, ExLE04 and SP10) and 2 Ashi points in the affected knee) + <i>Educational leaflet</i> (containing basic information about KOA such as definition, pathology, current treatment options including drug therapy, supplements and hyaluronic acid or steroid injection and recommendations on the principles of self-exercise, good postures and rules for daily activities avoiding	 Depression – BDI; Disability – WOMAC; Function – Timed-stand test, standing-balance test and 6 min walk test; Pain – NPRS; QOL – SF-36. 	 WOMA between-g moxibusti WOMAC moxibusti Pain: M significan 13 (P<0.0 Function function f care at we improven (P=0.52 a test (P=0. BDI: Th week 5 (F SF-36: T cant impr (P=0.0299 ference be week 5 (F significan 5 (P=0.0025 (P=0.1214 general he
Zhao et al. 91	• To compare the effectiveness and safety of moxibustion vs sham moxibustion in pain of KOA patients.	• n_{Total} = 110 Age: 65.2±7.9 years Weight: 65±6.3 kg Height: 1.62±7.98 m BMI: 24.6±5.5 kg/m ² Gender: 66% (73) female; 34% (37) male; • $n_{\text{Experimental}}$ = 55 Age: 65.8±7.45 years Weight: 64.1±9 kg Height: 1.63±5.28 m BMI: 24.1±1.1 kg/m ² Gender: 71% (39) female; 29% (16) male; • n_{Control} = 55 Age: 64.6±8.4 years Weight: 66±5.2 kg Height: 1.62±1.45 m BMI: 25.2±2.4 kg/m ² Gender: 62% (34) female; 38% (21) male.	 Experimental – Moxibustion (acupoints Dubi (ST 35), extra-point Neixiyan (EX-LE 4), and an Ashi) – 20 min, 3x per week, during 6 weeks; Control – Sham Moxibustion (same procedures as the experimental group, however without active moxibustion) – 20 min, 3x per week, during 6 weeks. 	• Disability – WOMAC.	not show The WON the active (P=0.012) did WOM group at v but not 2:

ÓRGÃO OFICIAL DA SOCIEDADE PORTUGUESA DE REUMATOLOGIA

191

IAC: The global score showed significant differences n-groups at week 5 and 13 (P<0.01) in favor for the stion group. Additionally, all subcategories of C showed significant improvement following stion treatment at week 5 and 13 (P<0.01); Moxibustion treatment improved the pain antly compared with usual care at week 5 and).01);

tion: Moxibustion significantly improved knee n for standing and sitting in a chair compared to usual week 5 (P=0.0486) and 13 (P=0.0006). No significant ement was observed in the standing-balance test 2 at week 5 and P=0.26 at week 13) or six-minute walk =0.51 at week 5 and P=0.68 at week 13);

There was no significant difference between-groups at (P=0.34) and 13 (P=0.64);

: The physical component summary showed signifiprovement following moxibustion treatment at week 5 299) and 13 (P=0.0023). There was no significant difbetween groups in mental component summary at (P=0.2124) and 13 (P=0.3129). Bodily pain showed ant improvement following moxibustion both at week 0003) and 13 (P=0.005). Physical functioning and unctioning also showed better results at week 5 025 and P=0.0418 respectively), but not at 13 214 and P=0.4487 respectively). In the role-physical, health, vitality, role-emotional and mental health did w any significant differences at week 5 or 13 (P<0.05). OMAC pain scores showed greater improvement in ve treatment group than in control at week 3 2), 6 (P<0.001), 12 (P=0.002), and 24 (P=0.002) as DMAC physical function scores of the experimental t week 3 (P=0.002), 6 (P=0.015), and 12 (P<0.001)

24 (P=0.058).

Interventions (Authors)	Objectives	Subjects	Cohorts	Outcome Measures	Results
Mind Body Therapies Tai Ji					
Wang et al. ⁸⁹	• To compare Tai Ji with standard physical therapy for KOA patients.	 n_{Total}= 204; Age: 60 years BMI: 33 kg/m² Gender: 70% (143) female; 30% (61) male; n_{Experimental}= 102; n_{Control}= 102. 	 Experimental – <i>Tai Ji</i> (warm-up + Tai Ji principles and movements + breathing techniques + relaxation methods) – 60 min, 2x per week, during 12 weeks; Control – <i>Standard Physical therapy</i> (manual therapy or exercise) – 30 min, 2x per week, during 6 weeks + <i>Home exercises</i> – 30 min, 4x per week, during 6 weeks. 	 Depression – BDI; Disability – WOMAC; Function – 6 min walk test and 20 m walk test; Medication – ASES; QOL – SF-36. 	• There + between- for the B (P=0.002
<u>Yoga</u> Ebnezar et al. ⁶²	• To evaluate the efficacy of integrating Hatha Yoga therapy with therapeutic exercises for KOA patients.	• n_{Total} = 250 Gender: 69.6% (174) female; 30.4% (76) male; • n_{Voga} = 125 Age: 59.6±8.18 years Gender: 70.4% (88) female; 29.6% (37) male; • $n_{Control}$ = 125 Age: 59.4±10.66 years Gender: 68.8% (86) female; 31.2% (39) male.	 Yoga – <i>Hatha Yoga</i> (yogic sukshama vyayamas + asanas + pranayama + meditation + relaxation techniques + counseling) – 40 min per day, during 2 weeks + <i>Physiotherapy</i> (TENS + US) – 10 + 10 min per day, during 2 weeks; Control – <i>Exercise</i> (loosening and strengthening to upper and lower limb + specific knee practices + supine rest) – 40 min per day, during 2 weeks + <i>Physiotherapy</i> (TENS + US) – 10 + 10 min per day, during 2 weeks. 	 Crepitus – Palpation; Disability – WOMAC; Edema – Palpation; Function – 50 m time walk; Pain – NPRS; ROM – Goniometer; Tenderness – Palpation. 	 Pain: T (P<0.001) interventicontrol g WOMA disability (P<0.001) yoga tha ROM: and betweethe yoga Tender difference (P<0.001) yoga that Function (P<0.001)
Cheung et al.53	• To assess the feasibility and potential efficacy of a Hatha Yoga in managing osteoarthritis related symptoms in older women with KOA.	 n_{Total}= 36; Age: 72 years BMI: 29 kg/m²; n_{Voga}= 18 Age: 71.9 years BMI: 29.1 kg/m²; n_{Control}= 18 Age: 71.9 years BMI: 28.8 kg/m². 	 Yoga – Hatha Yoga (pranas + asanas + pranayama + meditation) – 60 min per day, lx per week, during 8 weeks + Home Yoga – 30 min, 4x per week, during 8 weeks; Control – Wait list (no intervention) – during 8 weeks. 	 Disability – WOMAC; Physical Performance – SPPB; QOL – SF-12; Sleep – PSQI; Weight – BMI. 	vention v group. • WOM/ pain (P= control g found fo between- found sig and T1 v total (T1 significan measures • SPBB: 0 difference found fo between-

were no statistical differences (P>0.05) -groups in all time and evaluated outcomes except BDI overall score (P=0.012) and at week 12)2).

There was a significant difference in pain within 01) and between the groups (P<0.001) after the ntion with higher effect size in the yoga than in the group;

IAC: There was a significant difference in knee ty within (P<0.001) and between the groups 01) after the intervention with higher effect size in the an in the control group;

There was a significant difference within (P<0.001) ween the groups (P<0.001) in the flexion of right and joints after the intervention with higher effect size in than in the control group.

rness, swelling, and crepitus: Showed a significant ce within (P<0.001) and between the groups 01) after the intervention with higher effect size in the

an in the control group; ion: There was a significant reduction in time within

01) and between the groups (P<0.001) after the interwith higher effect size in the yoga than in the control

IAC: There was only found significant differences in =0.01) and stiffness (P=0.002) comparing to the group. No significant differences (P>0.05) were or other outcome measures after 8 weeks in the n-group analysis. In within group analysis there was ignificant differences in pain (T1 vs. T2 – P=0.04 vs T3 – P=0.01), function (T1 vs T3 – P=0.008) and vs T2 – P=0.046 and T1 vs T3 – P=0.007). No other ant differences (P>0.05) were found within outcome es at T1 (week 4), T2 (week 8) and T3 (week 20); Only repeated chair stand had between-group ces (P=0.03). No significant differences (P>0.05) were or other outcome measures after 8 weeks in the n-group analysis. In within group analysis there was

Interventions					
(Authors)	Objectives	Subjects	Cohorts	Outcome Measures	Results found s score (F (P>0.05 4), T2 (• BMI, I in betw
Diathermy					T1 vs T
US	• To compare the effects of DHT and SHT in patients with symptomatic KOA, and to determine the long-term effects of heat therapy.	 n_{Ibtal}= 54 Gender: 83.4% (45) female; 16.6% (9) male; n_{SHT}= 27 Age: 66.3±11.6 years BMI: 27±3.9 kg/m² Gender: 81.5% (22) female; 18.5% (5) male; n_{DHT}= 27 Age: 64±9.8 years BMI: 27.4±4.8 kg/m² Gender: 85.2% (23) female; 14.8% (4) male. 	 SHT – <i>Diathermy</i> (pad of the hyperthermia device kept warm at 38°C without switching on the microwave generator) – 30 min, 3x per week, during 4 weeks; DHT – <i>Diathermy</i> (pad placed 2 cm above the patella, with the knee at 30° of flexion. The output power was set at 40W and the silicone pad water temperature kept at 38°C. The skin pilot temperature was set to a value aimed at achieving a 1.5°C ØT) – 30 min, 3x per week, during 4 weeks. 	 Disability – WOMAC; Pain – VAS; Strength – BMRC. 	• WOM was sign times (a compar staticall group si and T1, evaluate • Streng group e Further SHT gro times (F (at least T1-T3 a times in • Pain: significa (at least scores in betweer improve and T4,
Ulus et al. ⁸⁶	• To evaluate the short-term effectiveness of US therapy on pain, physical function, ambulation activity, disability and psychological status in patients with KOA.	 n_{Evtal}= 40; n_{Exprimental}= 20 Age: 60.7±10.1 years Weight: 80.7±11.6 kg Height: 1.60±0.68 m BMI: 31.6±4.4 kg/m²; n_{Control}= 20 Age: 60.3±8.8 years Weight: 78±10.7 kg Height: 1.60±0.78 m BMI: 31.1±4.7 kg/m². 	 Experimental – US (1-MHz US head, continuous mode, with intensity of 1 W/cm2, for 10 min) + Hot packs (20 min) + IFC (10 min) + Quadriceps Isometric Exercises (15 min) – 5 x per week, during 3 weeks; Control – Sham US (same procedure described earlier but without a functional US, for 10 min) + Hot packs (20 min) + IFC (10 min) + Quadriceps Isometric Exercises (15 min) – 5 x per week, during 3 weeks. 	 Ambulation – 50-m walking speed; Disability – Lequesne Index; Functional – WOMAC; Pain – VAS; Psychological status – HADS. 	• There (P>0.0, • On o statistic

ÓRGÃO OFICIAL DA SOCIEDADE PORTUGUESA DE REUMATOLOGIA

194

ÓRGÃO OFICIAL DA SOCIEDADE PORTUGUESA DE REUMATOLOGIA

gnificant differences in walk (P=0.03) and global =0.007) at T1 vs T2. No other significant differences were found within outcome measures at T1 (week week 8) and T3 (week 20);

SQI and SF-12: no significance differences (P>0.05) en-groups and within analysis were found at week 8, 2, T1 vs T2 and T2 vs T3.

AC: In between group comparison the DHT group ificantly better than the SHT group in all evaluated t least P<0.015). Furthermore, in intra-group sons the scores in the SHT group did not showed differences between times (P>0.05), yet the DHT nowed improvements (at least P<0.003) between T0 T2, T3 and T4, but not (P>0.05) in the others ed times intervals;

th: The BMRC scores did not showed a significant fect in comparison DHT and SHT group (P>0.05). nore, in intra-group comparisons the scores in the up did not showed statically differences between >0.05), yet the DHT group showed improvements P<0.041) between T0-T2, T0-T3, T0-T4, T1-T2, nd T1-T4, but not (P>0.05) in the others evaluated tervals;

in between group comparison the DHT group was ntly better than the SHT group in all evaluated times P<0.016). Moreover, in intra-group comparisons the the SHT group did not showed statically differences times (P>0.05), yet the DHT group showed ments (at least P<0.004) between T0 and T1, T2, T3 but not (P>0.05) in the others evaluated times intervals.

was not found significant statistical differences in all evaluated outcomes between-group; her hand, pre vs post treatment, all outcomes showed l differences (P<0.05) in both groups.

Interventions (Authors)	Objectives	Subjects	Cohorts	Outcome Measures	Results
Cakir et al. ⁵²	To compare whether the	• n _{Total} = 60	Continuous US – US (5-MHz US head, continuous mode, with intensity of 1 W/cm2,	• Disability – WOMAC;	All group
	effectiveness of continuous US	Gender: 78.3% (47)	for 12 min) + <i>Home Exercises</i> (Quadriceps Isometric Exercises + Muscle Strength	• Function – 20-m walking time;	all outcom
	was superior against pulsed US	female; 21.7% (13) male;	Exercises + Stretching Exercises) – 5 x per week, during 2 weeks;	• Pain – VAS.	However, t
	and against sham US in KOA.	• n _{Continuous US} = 20	• Pulsed US – US (5-MHz US head, 1:4 pulse, with intensity of 1 W/cm2, for 12 min)		(P>0.05).
	0	Age: 56.9±8.8 years	+ Home Exercises (Quadriceps Isometric Exercises + Muscle Strength Exercises +		
		BMI: 27.9±4.4 kg/m ²	Stretching Exercises) – 5 x per week, during 2 weeks;		
		• Gender: 70% (14) female;			
		30% (6) male;	for 12 min) + Home Exercises (Quadriceps Isometric Exercises + Muscle Strength		
		• n _{Pulsed US} = 20	Exercises + Stretching Exercises) – 5 x per week, during 2 weeks.		
		Age: 58.2±9.9 years			
		BMI: 30.9±4.0 kg/m ²			
		• Gender: 80% (16) female;			
		20% (4) male;			
		• n _{Sham US} = 20			
		Age: 57.1±7.8 years			
		BMI: 29.5±5.9 kg/m ²			
		Gender: 85% (17) female;			
Mudnash		15% (3) male.			
<u>Mudpack</u> Tefner et al. ⁸⁵	• To evaluate the effects of	• n _{Total} = 53	• Experimental – <i>Neydharting hot mudpack-therapy</i> – 30 min each session, 5 x per week,	• Disability – WOMAC;	• In betwee
lemer et al.	Neydharting mud-pack therapy	Gender: 85% (45) female;	during 2 weeks;	 Pain – VAS; 	showed sig
	on the clinical parameters and	15% (8) male;	 Control – Hot packs – 30 min each session, 5 x per week, during 2 weeks. 	• QOL – EuroQOL-5D.	• Within g
	QOL in patients with KOA.	• $n_{\text{Exprimental}} = 27;$	Control not pucks so mill cach session, s x per week, during 2 weeks.		statistical d
		• $n_{Control} = 26$.			Statistical e
Laser					
Alfredo et al.41	• Evaluate the effects of LLLT in	• n _{Total} = 40	• Experimental (LLLT) – LLLT (5 points at the medial side of the knee and in 4 points at	• Disability – WOMAC;	• WOMAC
	combination with exercises on	Gender: 77.5% (31) female;		• Function –Lesquene	intergroup
	pain, functionality, ROM,	22.5% (9) male;	power of 60 mW, peak power of 20W, pulse duration 4.3 ms, 50 sec per point)	questionnaire;	and total s
	muscular strength and QOL in	• n _{lllt} = 20	– 3 x per week, during 3 weeks + <i>Exercises</i> (10 min warm-up (treadmill, ergometer	• Pain – VAS;	(P=0.001),
	KOA patients.	Age: 61.2±7.5 years	bike or rowing machine) + 30 min, 2-3 sets of exercises (to increase ROM, motor	• ROM – Goniometer;	T3 compar
		Weight: 76.3±10.3 kg	learning, balance coordination and strengthening) + 5 min stretching (hamstrings,	• Strength – Dynamometer.	improveme
		Height: 1.59±0.08 m	quadriceps adductors and gastrocnemius)) – 3 x per week, during 8 weeks;		and activity
		BMI: $30.2 \pm 4.1 \text{ kg/m}^2$	• Control (Placebo LLLT) – <i>Placebo LLLT</i> (same procedures as the experimental group		and T3 (P=
		Gender: 75% (15) female;	however the laser was not functioning) $-3 \times \text{per week}$, during 3 weeks + <i>Exercises</i>		differences
		25% (5) male;	(10 min warming-up (treadmill, ergometer bike or rowing machine) + 30 min, 2-3 sets of exercises (to increase ROM, motor learning, balance coordination and/or		group (P>(
		• $n_{Placebo} = 20$ Age: 62.3±6.87 years	strengthening) + 5 min lower limb stretching) – 3 x per week, during 8 weeks.		significant • Pain: Las
		Weight: 74.9 ± 15.7 kg	strengthening) + 5 min lower mild stretching) – 5 x per week, during 6 weeks.		(P=0.001)
		Height: 1.59 ± 0.09 m			No signific
		BMI: 29.2±5 kg/m ²			neither the
		Gender: 80% (16) female;			improveme
		20% (4) male.			Function
					(P=0.001)
					No signific
					neither the
		•			

197

oups showed a statistically significant improvement in omes in pre vs post treatment (P<0.05); r, there was no significant difference between-groups

ween-group comparison, none of the outcomes significant (P>0.05) statistical differences; group analysis both groups showed significant al differences (P<0.001) in all outcomes.

AC: Laser group showed significant improvement in up analysis in pain (P=0.033), function (P=0.002) l score (P=0.008) at T2 compared to T1 and pain 1), function (P=0.002) and total score (P=0.003) in pared to T1. Laser group showed significant ement in intragroup analysis in pain scores (P<0.05) vity (P<0.001) between T1 and T2 and between T2 (P=0.001). No other statistically significant ces were found in the other variables in the laser P>0.05) neither the placebo group showed nt improvements for any of the variables (P>0.05); aser group showed significant improvement 1) in intragroup analysis between T1 and T2. ficant improvement in intergroup analysis (P>0.05), he placebo group showed any significant ment in other variables; onality: Laser group showed significant improvement 1) in intragroup analysis between T2 and T3.

ficant improvement in intergroup analysis (P>0.05), he placebo group showed any significant

TABLE III. CONT	moation				
Interventions					D L
(Authors)	Objectives	Subjects	Cohorts	Outcome Measures	Results improvem • ROM: L (P=0.01) No signifi neither th improvem • Strength
Kheshie et al. ⁷⁰	• To compare the effects of LLLT and HLLT on pain relief and functional improvement in KOA patients.	• n_{Total} = 53 Age: 54.6±8.5 years Weight: 87±10.2 kg Height: 1.73±5.57 m BMI: 29.1±4.1 kg/m ² Gender: 100% male; • n_{LLLT} = 18 Age: 56.6±7.9 years Weight: 85.2±14 kg Height: 1.73±4.92 m BMI: 28.6±5.2 kg/m ² ; • n_{HILT} = 20 Age: 52.1±6.5 years Weight: 88.6±7.5 kg Height: 1.72±5.49 m BMI: 30±3.4 kg/m ² ; • n_{Placebo} = 15 Age: 55.6±11 years Weight: 87±7.8 kg Height: 1.75±6.3 m BMI: 28.5±3.4 kg/m ² .	 LLLT – <i>LLLT</i> (wavelength of 830 nm, output power of 800 mW, average energy density of 50 J/cm², frequency of 1 KHz, and duty cycle of 80 %) – 32 min, 2x per week, 12 weeks + <i>Exercise</i> (10 min warm-up on a treadmill + ROM exercises (hip, knee, and ankle joints) + muscle strengthening (10 times/set, for 3x with a 2-min rest interval in the form of straight leg raising exercise) + flexibility exercises (5 min of self-stretching for the hamstring and calf muscles)); HLLT – <i>HLLT</i> (initial phase with fast manual scanning with a total of 500 J + two successive sub phases of 710 and 810 mJ/cm² for a total of 500 J + in the joint line just proximal to the medial and lateral tibial condyles with 25 J, a fluency of 610 mJ/cm² + same as the initial phase except that scanning was slow manual scanning with a time of 14 sec for each point and a total of 250 J) – 15 min, 2x per week, 12 during weeks + <i>Exercise</i> (10 min warm-up on a treadmill + ROM exercises (hip, knee, and ankle joints) + muscle strengthening (10 times/set, for 3x with a 2-min rest interval in the form of straight leg raising exercise) + flexibility exercises (5 min of self-stretching for the hamstring and calf muscles)); Placebo – <i>Placebo Laser</i> (equal to the others groups, however using sham laser) + <i>Exercise</i> (10 min warm-up on a treadmill + ROM exercises (hip, knee, and ankle joints) + muscle strengthening (10 times/set, for 3x with a 2-min rest interval in the form of straight leg raising exercise) + flexibility exercises (5 min of self-stretching for the hamstring and calf muscles)); 	• Disability – WOMAC; • Pain – VAS.	intragroup • Both trea were effec WOMAC • HLLT com were bette with KOA
PEMF Bagnato et al. ⁴⁸	• To test the effectiveness of a wearable PEMF device in the management of pain in KOA patients.	 n_{Total}=60 Age: 67.7±10.9 years BMI: 27.4±4.3 kg/m² Gender: 72% (43) female; 28% (17) male; n_{Experimental}= 30 Age: 68.6±11.9 years BMI: 27.7±4.6 kg/m² Gender: 70% (21) female; 30% (9) male; n_{Control}= 30 Age: 66.9±10 years BMI: 27.1±4.1 kg/m² Gender: 87% (22) female; 13% (8) male. 	 Experimental – <i>PEMF</i> (frequency is 27.12MHz, pulse rate of 1000Hz and a 100 s burst width with a peak burst output power of the 12 cm antenna of ~0.0098W that covers a surface area of ~103cm²) – 12h per day, during 1 month; Control – <i>Placebo PEMF</i> (same procedures as in the experimental group, however without a functional electromagnetic device) – 12h per day, during 1 month. 	 Disability – WOMAC; NSAID and analgesic intake – Self-reported; Pain – VAS; PPT – Tight pressure algometry; QOL – SF-36. 	• After 1 r (P<0.05), health (P= significant scores con

ÓRGÃO OFICIAL DA SOCIEDADE PORTUGUESA DE REUMATOLOGIA

198

ÓRGÃO OFICIAL DA SOCIEDADE PORTUGUESA DE REUMATOLOGIA

199

ment in other variables;

: Laser group showed significant improvement

) in intragroup analysis between T2 and T3.

ificant improvement in intergroup analysis (P>0.05),

the placebo group showed any significant

ement in other variables;

th: No significant improvement in intergroup and oup analysis in both groups (P>0.05).

reatments (HLLT and LLLT) combined with exercise ective (P<0.05) modalities in decreasing the VAS and C scores after 6 weeks of treatment;

combined with exercises was more effective than ombined with exercises, and both treatment modalities tter than exercises alone in the treatment of patients DA (P<0.05).

month, PEMF induced significant improvements , all evaluated outcomes, except for the SF-36 mental P=0.6). Also, after 1 month, PEMF induced a ant reduction (P<0.05) in VAS pain and WOMAC compared with placebo.

Interventions					
(Authors)	Objectives	Subjects	Cohorts	Outcome Measures	Results
Diet Christensen et al. ⁵⁷	• To compare results of obese KOA patients who, after an intensive weight loss regimen, received 1 year of either dietary support, a knee exercise program, or "no attention".	• $n_{Total}=192$ Age: 62.5 years Weight: 103.2 kg Gender: 81% (156) female; 9% (36) male; • $n_{Diet}= 64$ Age: 63±6.5 years Weight:103.6±14.8 kg Height:1.66±0.08 m BMI: 37.6±4.5 kg/m ² Gender: 81% (52) female; 19% (12) male; • $n_{Exercise}= 64$ Age: 62.9±5.8 years Weight:101±14 kg Height:1.66±0.08 m BMI: 36.5±4.4 kg/m ² Gender: 81% (52) female; 19% (12) male; • $n_{Control}= 64$ Age: 61.7±6.8 years Weight:105±16.1 kg Height:1.66±0.09 m BMI: 37.9±5.3 kg/m ² Gender: 80% (51) female; 20% (13) male.	 Diet – <i>Initial diet</i> (8 week of low-energy diet 810 kcal/day plus 8 weeks of hypo-energy diet 1.250 kcal/day) + <i>Long-term diet</i> (participants met weekly at the dietary unit, attending sessions that lasted approximately 1 hour – 1x per week, during 52 weeks; Exercise – <i>Initial diet</i> (8 week of low-energy diet 810 kcal/day plus 8 weeks of hypo-energy diet 1.250 kcal/day) + <i>Exercises</i> (participants underwent an exercise program consisting of a warm-up phase (10 minutes), a circuit-training phase (45 minutes), and a cool down/stretching phase (5 minutes)) – 3 x per week, during 52 weeks; Control – <i>Initial diet</i> (8 week of low-energy diet 810 kcal/day plus 8 weeks of hypo-energy diet 1.250 kcal/day). 	 Body composition – X-ray absorptiometry; Disability – KOOS; Function – 6 min walk test; Pain – VAS; QOL – SF-36. 	• The diet weight kg (P=0.002), 68 weeks fi In the othe statistical o
Mascarin et al. ⁷⁴	• To evaluate the effects of kinesiotherapy, US and TENS in management of bilateral KOA.	• n_{Total} = 40; • $n_{\text{Kinesiotherapy}}$ = 16 Age: 59.6±7.2 years Weight: 71.1±10.8 kg Height: 1.55±0.06 m; • n_{TENS} = 12 Age: 64.8±7.0 years Weight: 73.9±13.7 kg Height: 1.53±0.07 m; • n_{US} = 12 Age: 62.8±7.6 years Weight: 71.3±10.0 kg Height: 1.54±0.06 m.	 Kinesiotherapy – <i>Stretching</i> (done actively in all lower limb using static method – 3x each muscular group 30 sec) + <i>Isometric exercises</i> (strengthen adductor muscles + strengthen quadriceps muscles + strengthen hamstring muscles + strengthen abductor muscles – 30 reps each exercise 6 sec in max contraction and 3 sec rest between reps) – 20 min, 2x per week, 12 weeks; TENS – <i>TENS</i> (100Hz frequency pulse width of 50 s, intensity set at the individual subject's sensorial threshold, modulation up to 50% of variation frequency, quadratic biphasic symmetrical pulse – by self-adhesive 5x5 cm percutaneous electrodes, during 20 min) + <i>Kinesiotherapy</i> (same process described earlier) – 40 min, 2x per week, 12 weeks; US – <i>US</i> (continuous waves of 1 MHz frequency and 0.8 W/cm² – by a 5 cm diameter applicator, during 3 to 4 min) + <i>Kinesiotherapy</i> (same process described earlier) – 25 min, 2x per week, 12 weeks. 	 Disability – WOMAC; Function – 6 min walking test; Pain – VAS; ROM – Goniometer. 	 Pain: In t significant VAS in all § US group (groups (P> ROM: In increases (and TENS) least P>0.2 flexion in a differences WOMAC dimension in the intra comparison in Physical with US;

201

et group showed to be more powerful in reduction the kg (P=0.002), weight % (P=0.001), weight loss 2), BMI (P=0.003) and fat mass (P=0.001) after s follow up, in comparison to the other 2 groups. her evaluated outcomes there was not found any l differences (P>0.05).

n the intra-group comparisons (before vs. after) a nt decrease (at least P<0.009) was observed in the ll groups for both knees except for the left knee in the o (P=0.54). There were not found differences between P>0.05);

In the intra-group comparisons, for extension, s (at least P<0.003) were found in the Kinesiotherapy IS groups for both knees, but not in the US group (at 0.21). There were not significant differences in the n all groups (P>0.05). There were not found

es between groups (P>0.05);

AC: The WOMAC total scores and the score for each on improve significantly (at least P<0.01) in all groups tra-group comparisons. In between group

sons the Kinesiotherapy and TENS group were better cal Function and Total Score (P<0.05) in comparison

Interventions					
(Authors)	Objectives	Subjects	Cohorts	Outcome Measures	Results
					• Functio improvem and P=0.0 (P=0.61). (P>0.05).
Bennell et al. ⁴⁹ Electric	• To investigate whether 2 additional physiotherapy visits improve the outcomes with continued home exercise over KOA patients.	• n_{total} = 100 Age: 62.4±7.3 years Weight: 82.7±14.3 kg Height: 1.66±0.97 m BMI: 29.6±4.1 kg/m ² Gender: 52% (52) female; 48% (48) male; • $n_{Experimental}$ = 40 Age: 60.5±6.6 years Weight: 81.6±15.1 kg Height: 1.66±0.1 m BMI: 29.4±3.8 kg/m ² Gender: 60% (24) female; 40% (16) male; • $n_{control}$ = 38 Age: 63.7±7 years Weight: 82.2±13.8 Kg Height: 1.66±0.09 m BMI: 29.6±4.3 kg/m ² Gender: 47% (18) female; 53% (20) male.	 Experimental – Home exercises (weight-bearing neuromuscular exercises + non-weight-bearing quadriceps strengthening exercises) + 2 Physiotherapy supervised sessions (performed at 8 and 16 week) – 30 to 40 min, 4 x per week, during 24 weeks; Control – Home exercises (weight-bearing neuromuscular exercises + non-weight-bearing quadriceps strengthening exercises) – 30 to 40 min, 4 x per week, during 24 weeks. 	• Disability – WOMAC; • Pain – VAS.	• There w or WOMA
<u>Stimulation</u> Atamaz et al. ⁴⁵	• To compare the effectiveness of TENS, IFCs, and SWD against each other and sham intervention with exercise training and education as a multimodal package.	• n_{Total} = 203 Gender: 82.3% (167) female; 17.7% (36) male; • n_{TENS} = 37 Age: 61.9±6.9 years BMI: 28.4±3.5 kg/m ² Gender: 83.8% (31) female; 16.2% (6) male; • $n_{\text{TENS Sham}}$ = 37 Age: 60.7±6.5 years BMI: 29±4.1 kg/m ² Gender: 73% (27) female; 27% (10) male; • n_{IFC} = 31 Age: 62±7.9 years BMI: 29.8±3.4 kg/m ² Gender: 87.1% (27) female; 12.9% (4) male; • $n_{\text{IFC Sham}}$ = 35 Age: 61.3±7.8 years	 TENS – <i>TENS</i> (80Hz frequency with 10 to 30mA intensity for 20 min – 4 surface electrodes (5x5 cm) placed over the painful area) – 5 x per week, during 3 weeks <i>Exercises</i> (warm-up (5 to 6 min jogging period + 10 min stretching exercises) + strengthening exercises (isometric quadriceps + chair lift + minisquats) – 3 x per week, during 3 weeks; TENS Sham – <i>TENS Sham</i> (same procedures as TENS group however the machine was not working) – 5 x per week, during 3 weeks + <i>Exercises</i> (warm-up (5 to 6 min jogging period + 10 min stretching exercises) + strengthening exercises (isometric quadriceps + chair lift + minisquats) – 3 x per week, during 3 weeks; IFC – <i>IFC</i> (100Hz frequency generated by 4kHz sinusoidal waves for 20 min – 2 electrodes (8x6 cm) were placed onto the knee region) – 5 x per week, during 3 weeks + <i>Exercises</i> (warm-up (5 to 6 min jogging period + 10 min stretching exercises) + strengthening exercises (isometric quadriceps + chair lift - minisquats) – 3 x per week, during 3 weeks + <i>Exercises</i> (warm-up (5 to 6 min jogging period + 10 min stretching exercises) + strengthening exercises (isometric quadriceps + chair lift - minisquats) – 3 x per week, during 3 weeks; IFC Sham – <i>IFC Sham</i> (same procedures as IFC group however the machine was not working) – 5 x per week, during 3 weeks + <i>Exercises</i> (warm-up (5 to 6 min jogging period + 10 min stretching exercises) + strengthening exercises (isometric quadriceps + chair lift + minisquats) – 3 x per week, during 3 weeks; IFC Sham – <i>IFC Sham</i> (same procedures as IFC group however the machine was not working) – 5 x per week, during 3 weeks + <i>Exercises</i> (warm-up (5 to 6 min jogging period + 10 min stretching exercises) + strengthening exercises (isometric quadriceps + chair lift + minisquats) – 3 x per week, during 3 weeks; SWD – <i>SWD</i> (27.12MHz frequency, an input of 300W and a mean output of 3.2W) – 5 x per week, during 3 weeks + <i>Exercises</i> (warm-up (5 to 6 min jogging period + 	 Disability – WOMAC and NHP; Function – 15 m time to walk; Pain – VAS; ROM – Goniometer. 	 A signifi WOMAC treatment difference In paired differences variables s

ÓRGÃO OFICIAL DA SOCIEDADE PORTUGUESA DE REUMATOLOGIA 202

203

on: In the intra-group comparisons it was found ements in the Kinesiotherapy and US groups (P=0.003 0.04 respectively), but not in the TENS group . There were not found differences between groups

was no significant difference between groups for pain AAC (P>0.05).

nificant improvement (P<0.05) was found in VAS, C (function), NHP and 15 m time to walk in all nt groups over time, yet without a significant ce among the groups (P>0.05);

red comparison (treatment vs sham) no significant ces (P>0.05) were found in all group within the studied.

Interventions (Authors)	Objectives	Subjects	Cohorts	Outcome Measures	Results
IFC		BMI: 30.4±4.9 kg/m ² Gender: 80% (28) female; 20% (7) male; • n _{SWD} = 31 Age: 61.6±7.4 years BMI: 28.5±4.2 kg/m ² Gender: 87.1% (27) female; 12.9% (4) male; • n _{SWD Sham} = 32 Age: 61.4±8.2 years BMI: 29.3±3.4 kg/m ² Gender: 84.4% (27) female; 15.6% (5) male.	 10 min stretching exercises) + strengthening exercises (isometric quadriceps + chair lift + minisquats) – 3 x per week, during 3 weeks; • SWD Sham – SWD Sham (same procedures as SWD group however the machine was not working) – 5 x per week, during 3 weeks + <i>Exercises</i> (warm-up (5 to 6 min jogging period + 10 min stretching exercises) + strengthening exercises (isometric quadriceps + chair lift + minisquats) – 3 x per week, during 3 weeks. 		
Gundog et al. ⁶⁶	• To compare the effectiveness of different amplitude-modulated frequencies of IFC and sham IFC on KOA.	• $n_{\text{Total}}=60$ Gender: 80% (48) female; 20% (12) male; • $n_{\text{IFC} 40}=15$ Age: 59.6±8.4 years BMI: 28.1±3.5 kg/m ² Gender: 80% (12) female; 20% (3) male; • $n_{\text{IFC} 100}=15$ Age: 59.6±8.1 years BMI: 29.5±4.3 kg/m ² Gender: 80% (12) female; 20% (3) male; • $n_{\text{IFC} 180}=15$ Age: 60.2±8.6 years BMI: 28.7±4.5 kg/m ² Gender: 80% (12) female; 20% (3) male; • $n_{\text{Sham IFC}}=15$ Age: 60.5±8.6 years BMI: 28.8±2.7 kg/m ² Gender: 80% (12) female; 20% (3) male.	 IFC 40 – <i>IFC</i> (40Hz frequency generated by bipolar 4kHz applied by two electrodes (8x6 cm) placed laterally on the patella) – 20 min each session, 5x per week, during 3 weeks; IFC 100 – <i>IFC</i> (100Hz frequency generated by bipolar 4kHz applied by two electrodes (8x6 cm) placed laterally on the patella) – 20 min each session, 5x per week, during 3 weeks; IFC 180 – <i>IFC</i> (180Hz frequency generated by bipolar 4kHz applied by two electrodes (8x6 cm) placed laterally on the patella) – 20 min each session, 5x per week, during 3 weeks; IFC 180 – <i>IFC</i> (180Hz frequency generated by bipolar 4kHz applied by two electrodes (8x6 cm) placed laterally on the patella) – 20 min each session, 5x per week, during 3 weeks; Sham IFC – (pads in the same location described earlier, but no electrical stimulation was applied to the probes) – 20 min each session, 5x per week, during 3 weeks. 	 Disability – WOMAC; Function – 15m walking time; Pain – VAS; ROM – Goniometer. 	• All varia comparing and at 1 m stiffness in and at 1 m
NMES Mizusaki et al. ⁷⁵	• To investigate the effect NMES plus Exercise on pain and functional improvement in KOA patients compared to exercise alone.	 n_{Total}= 100 Gender: 86% (86) female; 14% (14) male; n_{Experimental}= 50 Age: 60.6±6.7 years BMI: 30.1±3.8 kg/m² Gender: 92% (46) female; 8% (4) male; n_{Control}= 50 Age: 61.5±6.9 years BMI: 29.7±4.1 kg/m² Gender: 80% (40) female; 20% (10) male. 	 Experimental – <i>NMES</i> (two 7.5 × 13 cm self-adhesive electrodes placed over the quadriceps) pulsed current, biphasic, asymmetrical, rectangular waveform, frequency 50Hz, pulse duration 250 s, contraction time 10 sec, rest time 30 sec every 20 min + <i>Exercise</i> (10 min on a stationary bicycle + stretching of hamstring muscles (3 reps of 30 sec) with the aid of an elastic band + loaded quadriceps strengthening exercises combined with NMES) – 2x per week, 8 weeks, 40 min each session; Control – <i>Exercise</i> (10 min on a stationary bicycle + stretching of hamstring muscles (3 reps of 30 sec) with the aid of an elastic band + knee extension exercises performed for 3 sets of 15 reps with rest intervals of 30-45 sec between set) – 2x per week, 8 weeks, 40 min each session; 	 Disability – WOMAC; Function – TUG; Pain – NPRS. 	• Both gro with the b were not s compariso

205

triables of all groups improved significantly (P<0.05), ring with their baseline, immediately after treatment moth follow-up. The only exception was in WOMAC s in the IFC 180 and Sham IFC groups, after treatment l month.

groups improve significantly (P<0.05) in comparison e baseline in all evaluated variables. However, there significant different (P>0.05) in between-group ison in all evaluated variables.

FERREIRA RM ET AL

TABLE III. CONTINUATION

Interventions	Ohiostino	Calierte	Calverte	Outrans Manager	Descrites
(Authors) de Oliveira et al. ⁵⁹	Objectives To determine the effects of NEMS 	Subjects n_{Total}=44; 	Cohorts NEMS – NEMS (pulsed current, stimulation frequency 80 Hz, pulse duration 400 s, 	• Disability – WOMAC;	Results Knee ex
ue Onvena et al.	and LLLT on neuromuscular parameters and health status in KOA patients.	• n_{NEMS} = 15 Age: 69.3±5.5 years Height: 1.52±0.1 m Weight: 77.5±13.7 kg; • n_{LLIT} = 15 Age: 67.7±4.7 years Height: 1.59±0.1 m Weight: 74.7±11.1 kg;	 NEMS - NEMS (pulsed current, stimulation nequency so Hz, pulse duration 400 s, stimulation intensity 40% of maximal isometric voluntary contraction) – 18-32 min, 2x per week, during 8 weeks; LLLT - <i>Laser</i> (dose 4–6 J per point, 6 points at the knee joint, 30 sec per point) – 2-3 min, 2x per week, during 8 weeks; Combined – <i>NEMS</i> (pulsed current, stimulation frequency 80 Hz, pulse duration 400 s, stimulation intensity 40% of maximal isometric voluntary contraction) + <i>Laser</i> (dose 4–6 J per point, 6 points at the knee joint) – 20-35 min, 2x per week, during 8 weeks. 	 Disability – wOMAC, Knee extensors' electrical activity – Electromyography; Knee extensors' strength – Dynamometry; Muscle thickness and anatomical cross-sectional area – Ultrasonography. 	had signifi (P<0.05). not found • Muscle t was found baseline ir (P>0.05). significant
		• n _{Combined} = 14 Age: 69.6±4.7 years Height: 1.55±0.15 m Weight: 70.9±8.9 kg.			(P<0.05); • WOMAG compariso
<i>TENS</i> Palmer et al. ⁷⁸	• To determine the additional effects of TENS for KOA when combined with a group education and exercise program.	• n_{Total} = 224 Age: 61.4±10.5 years BMI: 29.6±8.4 kg/m ² Gender: 63% (141) female; 37% (83) male; • $n_{\text{TENS and Knee}}$ = 73 Age: 61.2±11.4 years BMI: 24.8±2.6 kg/m ² Gender: 64.4% (47) female; 35.6% (26) male; • $n_{\text{Sham TENS and Knee}}$ =74 Age: 60.9±10.8 years BMI: 29.1±9 kg/m ² Gender: 66.2% (49) female; 33.8% (25) male; • n_{Knee} = 77 Age: 62±9.4 years BMI: 29.8±7.4 kg/m ² Gender: 49.4% (38) female;	 TENS and Knee – <i>TENS</i> (electrical pulses asymmetric and biphasic in continuous mode at 110Hz and 50 s with 2 electrodes on the medial and other 2 on the lateral aspect on either side of the joint line) – 30 min, 6 weeks + <i>Exercise</i> (education (personal objectives + pacing + managing flares + diet + medical management of KOA + local community exercise opportunities + long-term exercise adherence) + exercises (5 min warm-up + improving lower extremity strength + proprioception + function)– 1h, 6 weeks; Sham TENS and Knee – <i>TENS dummy device</i> (same procedures described in the active TENS) + <i>Exercise</i> (education (personal objectives + pacing + managing flares + diet + medical management of KOA + local community exercise opportunities + long-term exercise adherence) + exercises (5 min warm-up + improving lower extremity strength + proprioception + function) – 1h, 6 weeks; Knee – <i>Exercise</i> (education) personal objectives + pacing + managing flares + diet + medical management of KOA + local community exercise opportunities + long-term exercise (education) personal objectives + pacing + managing flares + diet + medical management of KOA + local community exercise opportunities + long-term exercise (education) personal objectives + pacing + managing flares + diet + medical management of KOA + local community exercise opportunities + long-term exercise (education) personal objectives + pacing + managing flares + diet + medical management of KOA + local community exercise opportunities + long-term exercise adherence) + exercises (5 min warm-up + improving lower extremity strength + proprioception + function) – 1h, 6 weeks. 	 Adherence – 5-point Likert scale; Change – 7-point Likert scale; Disability – WOMAC; Self-efficacy – 5-point Likert scale. Strength – Digital myometer. 	• All outco were no di (P>0.05) i
Exercise		50.6% (39) male.			
FMV Rabini et al. ⁸²	• To evaluate the effects of FMV on physical functioning in symptomatic KOA patients.	 n_{Total}=50 Gender: 78% (39) female; 22% (11) male; n_{Experimental}= 25 Age: 73.7±5.2 years Gender: 92% (22) female; 6% (3) male; n_{Control}= 25 Age: 75.1±5.7 years Gender: 84% (17) female; 16% (8) male. 	 Experimental – <i>Focal Muscles Vibration</i> (applied bilaterally with a fixed frequency of 100 Hz and an amplitude of approximately 0.2-0.5 mm on the distal part of the quadriceps, in the insertion of the intermedius femoris, rectus femoris, vastus femoris and vastus lateralis muscles) – 10 min, 3 applications per day, during 3 consecutive days; Control – <i>Sham intervention</i> (the same procedure has the experimental group, however without the machine touching the skin) – 10 min, 3 applications per day, during 3 consecutive days. 	 Disability – WOMAC; Function – SPPB and POMA. 	 WOMAG difference months differences Function difference (SPPB and months (S There was other evaluation)
<i>Balance Training</i> Knoop et al. ⁷²	• To investigate whether stabilization, muscle strength and performance of daily activities	• n _{Total} = 159 Gender: 61% (97) female; 39% (62) male;	• Experimental – <i>Exercises</i> (joint stabilization + strength + daily activities performance) – 2x per week, 12 weeks with a 60 min duration + <i>Home exercises program</i> – 5 x per week, 12 weeks;	 Disability – WOMAC; Function – TUG, PSFL, WQ35, CStQ15 and QR&S39 	• No signi groups in was signifi

extensors' electrical activity and strength: All groups nificant improvements in comparison with the baseline 5). However in between-group comparison there was nd any differences (P>0.05);

le thickness and anatomical cross-sectional area: There nd significant improvements in comparison with the e in all groups (P<0.05) except for the LLLT group 5). Additionally, both NMES and Combined group had ant differences in comparison with the LLLT group 5);

IAC: All groups had significant improvements in ison with the baseline (P<0.05).

atcomes improved over time (P<0.05). However, there differences between trial arms and time x trial arms 5) in the outcomes.

IAC: There were found a statistically significant ice between the groups at 3 months (P=0.0263) and hs (P=0.0001). There was not found any statistical ces (P>0.05) in other evaluated times; tion: There were found a statistically significant ce between the groups at the end of the treatment and POMA; P=0.0172 and P=0.0029) and after 3 (SPPB and POMA; P=0.0036 and P=0.0000). vas not found any statistical differences (P>0.05) in valuated times.

gnificantly differences (P>0.05) were found in both in almost all evaluated variables, except in GPE were it nificantly higher (P=0.04) in the experimental group in

Interventions (Authors)	Objectives	Subjects	Cohorts	Outcome Measures	Results
(1101013)	exercises are more effective than	• n _{Experimental} = 80	Control – Exercises (strength + daily activities performance) – 2x per week, 12 weeks	• Instability – Self-reported;	compariso
	just strength and performance of daily activities exercises in KOA patients.	Age: 62.1±7.6 years BMI: 28.8±4.8 kg/m ² Gender: 66% (53) female; 47% (27) male; • n _{Control} = 79 Age: 61.8±6.6 years BMI: 28.3±4.5 kg/m ² Gender: 56% (44) female; 44% (35) male.	with a 60 min duration + <i>Home exercises program</i> – 5 x per week, 12 weeks.	 Pain – NPRS; Perceived effect – GPE; Proprioception – knee joint motion detection device; Strength – Isokinetic dynamometer. 	
Gomiero et al. ⁶⁵	• To compare the effectiveness of sensory-motor training vs resistance training among KOA patients.	• n_{Total} = 64; Gender: 95.3% (61) female; 4.7% (3) male; • $n_{Sensory-motor}$ = 32 Age: 61.6±6.8 years Weight: 75.7±13 Kg Height: 1.57±0.08 m BMI: 24.1±3.8 kg/m ² Gender: 93.8% (30) female; 6.3% (2) male; • $n_{Resistance}$ = 32 Age: 61.8±6.4 years Weight: 75.5±12.7 Kg Height: 1.59±0.07 m BMI: 23.6±3.5 kg/m ² Gender: 96.9% (31) female; 3.1% (1) male.	from the therapist + crossing steps while walking + crossing steps while walking back-wards + implementing sudden changes of direction; walking on several types of surfaces + maintaining posture during use of a balance board + using a mini-trampoline to expose individuals to potentially destabilizing loads) + stretching of the quadriceps, hamstrings and triceps surae) – 2x per week, 16 weeks; • Resistance – <i>Warm-up</i> (stationary bicycle for 10 minutes) + <i>Exercises</i> (quadriceps and	 Balance - Tinetti balance; Disability – WOMAC; Function – TUG; Pain – VAS; QOL – Sf-36; Strength – Isokinetic dynamometer. 	 No signil WOMAC, compariso except in t P=0.034; Intra-gro with a P≤0 balance. SI in the bodi (P=0.098), health (P=)
Resistance Training Anwer et al. ⁴³	• To investigate the effects of isometric quadriceps exercise on muscle strength, pain, and function in KOA.	 n_{Total}= 42 Gender: 69% (29) female; 31% (13) male; n_{Experimental}= 21 Age: 60.6±6.72 years Weight: 65±5 Kg Height: 1.57±0.43 m BMI: 26.5±1.8 kg/m²; n_{control}= 21 Age: 61.5±6.94 years Weight: 65.6±4.5 Kg Height: 1.55±0.34 m BMI: 27.1±1.3 kg/m². 	 Experimental – US (1.5W/cm², continuous mode, during 7 min) + <i>Exercises</i> (isometric quadriceps + straight leg raising + isometric hip adduction) – 5x per week, for 5 weeks; Control – US (1.5W/cm², continuous mode, during 7 min) – 5x per week, for 5 weeks. 	• Disability – WOMAC; • Pain – NPRS; • Strength – Gauge device.	 In betwe quadriceps isometric e significant Addition compariso (P<0.05) in not for the
Bennell et al. ⁵⁰	• To compare the effects of neuromuscular and quadriceps strengthening on the knee adduction moment, pain and physical function in patients with medial KOA and varus malalignment.	bMi. 27.1±1.5 kg/m ² • n_{total} = 100 Gender: 52% (52) female; 48% (48) male; • $n_{experimental}$ = 50 Age: 62.7±7.3 years Weight: 83.8±13.5 kg Height: 1.68±0.09 m BMI: 29.6±3.9 kg/m ² Gender: 52% (26) female;	 Experimental – <i>Neuromuscular strengthening</i> (forward and backward sliding or stepping + sideways exercises + functional hip muscle strengthening + functional knee muscle strengthening + step-ups and down + balance) – 30 to 40 min, 4 x per week, during 12 weeks; Control – <i>Quadriceps strengthening</i> (quads over a roll + knee extension in sitting + knee extension with hold at 30° knee flexion + straight leg raise + outer range knee extension) – 30 to 40 min, 4 x per week, during 12 weeks. 	 Alignment – 3D gait analysis; Disability – WOMAC; Pain – VAS. 	• There wa change in (P>0.05).

•				
rison	with	the	control.	

nificantly differences (P>0.05) were found in VAS, C, TUG, strength and balance in between-group son. SF-36 followed the same pattern in all items n the physical role functioning where it was obtained

group comparison showed significantly differences ≤0.001 in in VAS, WOMAC, TUG, strength and . SF-36 followed the same pattern in all items except odily pain (P=0.06), general health perceptions 8), social role functioning (P=0.932) and mental P=0.006).

ween-group comparisons, the maximum isometric eps strength, the pain intensity and function in the c exercise group at the end of the 5th week were intly greater than those of the control group (P<0.05). onally, in intra-group (baseline vs 5th week) sons it was found significantly improvements) in all evaluated outcomes in the exercise group, but he control group (P>0.05).

was no significant between-group difference in the in the peak knee adduction moment, pain or WOMAC

NON-PHARMACOLOGICAL AND NON-SURGICAL INTERVENTIONS FOR KNEE OA

TABLE III. CONTINUATION

Interventions (Authors)	Objectives	Subjects	Cohorts	Outcome Measures	Results
	48% (24) male; • n _{control} = 50 Age: 62.2±7.4 years Weight: 81.6±15.1 kg Height: 1.65±0.1 m BMI: 29.7±4.3 kg/m ² Gender: 52% (26) female; 48% (24) male.				Results
Henriksen et al. ⁶⁷	• To investigate the effects of exercise on pressure–pain sensitivity in KOA patients.	• n_{total} = 48 Gender: 81.2% (39) female; 18.8% (9) male; • $n_{Experimental}$ = 25 Age: 65±8.9 years Weight: 82.7±13.8 kg Height: 1.69±0.08 m BMI: 28.9±4.1 kg/m ² Gender: 88% (22) female; 12% (3) male; • $n_{control}$ = 23 Age: 62.3±7.1 years Weight: 82.8±15.8 kg Height: 1.71±0.09 m BMI: 28.2±4.6 kg/m ² Gender: 74% (17) female; 26% (6) male.	and knees) – 60 min, 3x per week, during 12 weeks; • Control – <i>Daily life activities</i> – during 12 weeks.	 Disability – KOOS; PPT and temporal summation – Cuff pressure algometry. 	• Statistic the PPT, t for the ex living spo statistical
DeVita et al. ⁶⁰ SWT	• To assess the effect of quadriceps strengthening on quadriceps muscle force, power, and work and tibiofemoral compressive loads during walking in KOA adults.	• n_{fotal} = 30 Age: 57.1±7.7 years BMI: 27.1±4 kg/m ² Gender: 60% (18) female; 40% (12) male; • $n_{\text{Experimental}}$ = 15 Age: 58.1±6.5 years Height: 1.73±0.07 m Weight: 79.4±14.8 kg BMI: 26.4±4 kg/m ² Gender: 66.7% (10) female; 33.3% (5) male; • n_{Control} = 15 Age: 56.2±8.9 years Height: 1.73±0.11 m Weight: 83.8.6±18.7 kg BMI: 27.9±3.9 kg/m ² Gender: 53.3% (8) female; 46.7% (7) male;	 Experimental – <i>Resistance training</i> (warm-up (stationary bicycle or treadmill – 5 to 10 min) + leg extension, leg press and forward lunge exercises each performed - 3 sets of 10 repetitions with loads, wherein the initial two weeks were performed at 60% 3RM, the following two weeks at 70% 3RM and the remaining 8 weeks at 85% 3RM) – 60 min, 3 x per week, during 12 weeks; Control – <i>No attention</i> 	 Disability – WOMAC; Gait analysis (muscle forces and joint compressive forces) – infrared 3D motion analysis system in combination with reflective markers and force platform; Strength – Isokinetic dynamometer. 	• Betweer difference Isokinetic variables (velocity). statistical
Imamura et al. ⁶⁹	• To assess the efficacy and safety of SWT for disabling pain due to primary KOA.	 n_{Total}= 105 Gender: 100% (105) female; n_{Experimental}= 52 Age: 70±6.5 years; n_{Control}= 53 Age: 72.4±6.5 years. 	 Experimental – SWT (2,000 RESWT impulses per session, positive energy flux density 0.10–0.16 mJ/mm² and impulses with a frequency of 8 Hz) – 1 x per week, during 3 weeks; Control – <i>Placebo SWT</i> (same procedure as the experimental group, however without a functional device) – 1 x per week, during 3 weeks. 	 Disability – WOMAC; Pain – VAS; PPT – Lumbar, thigh and calf pressure algometry. 	• Compar significan and a few

-	Δ.	1
	A	
		-

stical differences (P<0.05) were found from baseline for 'T, temporal summation and KOOS pain, all in favor e experimental group. The KOOS symptoms, daily sports/recreation and QOL did not showed any ical differences (P>0.05).
veen-group comparison showed significant statistical nces (P≤0.037) in WOMAC (pain, function and total), etic quadriceps muscle strength and some Gait les (maximum negative quadriceps power and walking ty). The other Gait variables did not show significant ical differences (P>0.05).
npared with placebo treatment, SWT had a statistically cant improvement only in WOMAC scores for pain few of the PPT measurements (P<0.05). continues on the next page

Interventions (Authors)	Objectives	Subjects	Cohorts	Outcome Measures	Results
<u>Hydrotherapy</u> Dias et al. ⁶¹	• To assess the impact of hydrotherapy on pain, function, and muscle function in KOA patients.	• n _{Iotal} = 75 Gender: 100% (75) female; • n _{Experimental} = 33 Age: 70.8±5 years	• Experimental – <i>Warm-up</i> (walking in the water increasing velocity + lower limb stretching exercises – 5 min) + <i>Strengthening exercises</i> (closed kinetic chain exercises using floats + multidirectional walking tasks – 30 min) + <i>Cool-down</i> (light walking + breathing exercises – 5 min) – 2 x per week, during 6 weeks + <i>Educational program</i>	 Disability – WOMAC; Strength, power, and resistance – Isokinetic dynamometer. 	• Between- differences Strength (e extension
Waller et al. ⁸⁸	• To investigate the effects of 4-months intensive aquatic	BMI: 30.5±4.3 kg/m ² • n _{Control} = 32 Age: 71±5.2 years BMI: 30±5.2 kg/m ² . • n _{Total} = 87 Gender: 100% (87) female;	 (face to face information about the diagnosis, symptoms, prognosis, and basic care of KOA during daily activities) – 1 x per week, during 6 weeks; Control – <i>Educational program</i> (face to face information about the diagnosis, symptoms, prognosis, and basic care of KOA during daily activities) – 1 x per week, during 6 weeks. Experimental – <i>Aquatic resistance training</i> (barefoot + small resistance fins + large resistance boots) – 1 h, 3 x per week, during 6 weeks; 	• Body composition – X-ray absorptiometry;	differences flexion Res • After the decrease (1
	resistance training on body composition and walking speed in KOA patients.	 n_{Experimental}= 43 Age: 63.8±2.4 years Height: 1.62±0.05 m Weight: 69.6±10.3 kg BMI: 26.6±3.8 kg/m² n_{Control}= 44 	• Control – Usual leisure activities.	 Disability – KOOS; Strength, power, and resistance – Isokinetic dynamometer; Walking speed – UKK 2 km walking test. 	(P=0.002) In contrast
		Age: 63.9±2.4 years Height: 1.62±0.05 m Weight: 71±11.2 kg BMI: 27.1±3.5 kg/m ² .			
Taglietti et al. ⁸⁴	• To compare the effectiveness of aquatic exercises with patient-education in KOA patients.	• n_{total} = 60 Gender: 68.3% (41) female; 31.7% (19) male; • $n_{\text{Experimental}}$ = 31 Age: 67.3±5.9 years BMI: 29.2±0.8 kg/m ² Gender: 74.2% (23) female; 25.8% (8) male; • n_{control} = 29 Age: 68.7±6.7 years BMI: 30.4±0.9 kg/m ² Gender: 37.9% (18) female;	included strategies for pain control (cognitive and pharmacological), physical exercise, nutrition, and weight control, medications (type, interactions, side effects, and updates), balance, proprioception, preventing falls, and how to deal with chronic pain) – 2h, 1 x per week, during 8 weeks + <i>Home exercises</i> (warm-up + self-stretching + isometric and dynamic exercises + proprioceptive and functional exercises of the lower limbs +	 Depression – YGDS; Disability – WOMAC; Function – TUG; Pain – VAS; QOL – SF-36. 	 In intra-ş the outcom (P<0.05) w and pain) 1 3 months; In betwee differencess month 3, a showed a I Other ou differencess between-gi
<u>Musculoskeletal</u> <u>Manipulations</u>		62.1% (11) male.	cool down) – 3 x per week, during 8 weeks.		
Abbott et al. ⁴⁰	• To investigate the addition of manual therapy to exercise therapy for the reduction of pain and increase of physical function in people with KOA, and whether "booster sessions" compared to consecutive sessions.	 n_{Total}= 75 Gender: 61.3% (46) female; 38.7% (29) male; n_{EX}= 19 Age: 64±10 years BMI: 29.2±6.1 kg/m² Gender: 58% (11) female; 41% (8) male; n_{EXB}= 19 Age: 65±10 years BMI: 30.2±5.6 kg/m² Gender: 58% (11) female; 41% (8) male; n_{EXMT}= 18 	 Exercise consecutive sessions – <i>Exercise</i> (aerobic + strengthening + neuromuscular coordination control exercises) – 45 min, 12 sessions in the first 9 weeks Exercise booster sessions – <i>Exercise</i> (aerobic + strengthening + neuromuscular coordination control exercises) – 45 min, 12 sessions in the first 9 weeks plus 8 consecutive sessions in the first 9 weeks, 2 booster sessions at 5 months, 1 booster session at 8 months, and 1 booster session at 11 months, also for a total of 12 sessions; Manual therapy with exercise consecutive sessions – <i>Exercise</i> (aerobic + strengthening + neuromuscular coordination control exercises) – 45 min, 12 sessions in the first 9 weeks + Manual Therapy (knee flexion + anteroposterior-directed force to the tibiofemoral joint + knee extension + posteroanterior-directed force to the tibiofemoral joint + patellar gliding force + manual stretch to quadriceps, hamstrings, triceps surae muscles + soft tissue manipulation) – 30 to 45 min, 12 sessions; Manual therapy with exercise booster sessions – <i>Exercise</i> (aerobic + strengthening + neuromuscular coordination control exercises) – 45 min, 12 sessions; 	 Disability – WOMAC; Function – TUG test, the 30 sec sit-to-stand test, and the 40-meter fast-paced walk test; Pain – NPRS. 	• In the pr significant manual the 9 weeks th P=0.021, ru statistically compariso

en-group comparison showed significant statistical ces ($P \le 0.05$) at WOMAC (pain and function), (extension and flexion), flexion Power and on Resistance. However, no significant statistical ces (P>0.05) were found at extension Power and Resistance.

he 4-month intervention there was a significant $P \leq 0.004$) in BMI, fat and body mass, and increase 02) in walking speed in favor of the intervention group. rast, lean mass and KOOS showed no change (P>0.05).

ra-group analysis (Aquatic Resistance Training group) comes that showed significant statistical differences were SF-36 (physical function) and WOMAC (total n) between the baseline and the week 8 and at is:

ween-group analysis showed significant statistical ces (P<0.05) in the WOMAC total at week 8 and at B, and WOMAC pain at week 8. Additionally, YGDS a P<0.05 at the baseline;

outcomes did not show significant statistical ces (P>0.05) neither in intra-group analysis nor in -group analysis in all evaluated time period.

primary outcome (WOMAC) there was found ant benefit from booster sessions (P=0.009) and therapy (P=0.023) over exercise therapy alone after s that maintained at 1-year follow-up (P=0.005 and , respectively). In Pain and function it was not found ally significant differences (P>0.05) in between-groups son.

Interventions (Authors)	Objectives	Subjects	Cohorts	Outcome Measures	Results
<u> </u>	J	BMI: 27.6±4.7 kg/m ² Gender: 67% (12) female; 33% (6) male; • n _{EXBMT} = 19 Age: 64±10.2 years BMI: 29.8±6.6 kg/m ² Gender: 63% (12) female; 37% (7) male.	1 booster session at 8 months, and 1 booster session at 11 months, also for a total of 12 sessions + <i>Manual Therapy</i> (knee flexion + anteroposterior-directed force to the tibiofemoral joint + knee extension + posteroanterior-directed force to the tibiofemoral joint + patellar gliding force + manual stretch to quadriceps, hamstrings, triceps surae muscles + soft tissue manipulation) – 30 to 45 min, 12 sessions.		
Mutlu et al. ⁷⁶	• To compare long-term results between mobilization with movements, passive joint mobilization and electrotherapy in KOA patients.	• $n_{\text{total}} = 64$; Gender: 87.5% (56) female; 12.5% (8) male; • $n_{\text{Active Mobilization}} = 21$ Age: 54.2±7.3 years BMI: 30.8±5 kg/m ² Gender: 100% (21) female; • $n_{\text{Passive Mobilization}} = 21$ Age: 56.3±6.6 years BMI: 30.7±4.3 kg/m ² Gender: 76.2% (16) female; 23.8% (5) male; • $n_{\text{Electrotherapy}} = 22$ Age: 57.8±6.2 years BMI: 32.6±5.7 kg/m ² Gender: 86.4% (19) female; 13.6% (3) male;	 Mobilization with movement – <i>Exercise</i> (Aerobic (static cycle – 10 min) + Active ROM (knee in extension to full-flexion + knee in flexion to full-extension exercises – 10 reps) + Strength (quadriceps isometric contractions – 10 sec, 10 reps) + Stretching (gastrocnemius-soleus + hamstring muscle stretching exercises – 30 sec, 3 reps) – 20 min, 3x per week, during 4 weeks + <i>Active mobilization</i> (Sustained manual glide of the tibia (medial, lateral, or rotation) during active knee flexion and extension (10 reps, 3 sets)) – 30 min, 3x per week, during 4 weeks + <i>Home exercises</i> (same exercises described earlier) – 2 x per day, every day, 52 weeks; Passive Mobilization – <i>Exercise</i> (Aerobic (static cycle – 10 min) + Active ROM (knee in extension to full-flexion + knee in flexion to full-extension exercises – 10 reps) + Strength (quadriceps isometric contractions – 10 sec, 10 reps) + Stretching (gastrocnemius-soleus + hamstring muscle stretching exercises – 30 sec, 3 reps) – 20 min, 3x per week, during 4 weeks + <i>Passive mobilization</i> (Knee distraction and dorsal glides, ventral glides and patellar glides in all directions (2–3 oscillations per sec, for 1–2 min)) – 30 min, 3x per week, during 4 weeks + <i>Home exercises</i> (same exercises described earlier) – 2 x per day, every day, 52 weeks; Electrotherapy – <i>Exercise</i> (Aerobic (static cycle – 10 min) + Active ROM (knee in extension to full-flexion + knee in flexion to full-extension exercises described earlier) – 2 x per day, every day, 52 weeks; Electrotherapy – <i>Exercise</i> (Aerobic (static cycle – 10 min) + Active ROM (knee in extension to full-flexion + knee in flexion to full-extension exercises - 10 reps) + Strength (quadriceps isometric contractions – 10 sec, 10 reps) + Strength (gastrocnemius-soleus + hamstring muscle stretching exercises – 30 sec, 3 reps) – 20 min, 3x per week, during 4 weeks + <i>TENS</i> (4 electrodes in continuous mode, with 110 Hz and 50 s) – 20 min, 3x per week, during 4 weeks + <i>US</i> (1-MHz frequency, 0.8 W/	 Disability – WOMAC; ROM – Goniometer; PPT – Knee pressure algometry; Pain – VAS; Strength – Dynamometer; Function – ALF: 	 After 4 v difference all evaluat In 1 yea difference vs Electro WOMAC (P>0.05).
Self-care Coleman et al. ⁵⁸	To compare the effectiveness of two self-management programs in KOA patients.	 n_{total}= 146 Gender: 75.7% (109) female; 24.3% (37) male; n_{Exprimental}= 71 Age: 65±7.9 years Gender: 80.3% (57) female; 19.7% (14) male; n_{Control}= 75 Age: 65±8.7 years Gender: 69.3% (52) female; 30.7% (23) male. 	 Experimental – <i>Self-management OAK</i> (holistic approach including osteoarthritis explanation and implications, self-management skills (goal-setting, problem-solving, modelling, positive thinking and improving self-efficacy), medications (types, interactions and current trends), correct use of analgesia (use, therapeutic dosing, types and side effects), pain management strategies (cognitive and pharmacologic), fitness and exercise (strength, flexibility, aerobic and balance), joint protection, nutrition and weight control, fall prevention (balance and proprioception), environmental risks, poly-pharmacy and coping negative emotions) – 2.5 h per week, during 6 weeks; Control – <i>Self-management ASMP</i> (holistic approach including osteoarthritis general overview, self-management skills (goal-setting, problem-solving, modelling, positive thinking and improving self-efficacy), medications general overview, pain management strategies (cognitive and pharmacologic), fitness and exercise general information, joint protection, nutrition and weight control, fall prevention (balance and proprioception), environmental risks, poly-pharmacy and coping negative emotions) – 2.5 h per week, the self-management skills (goal-setting, problem-solving, modelling, positive thinking and improving self-efficacy), medications general overview, pain management strategies (cognitive and pharmacologic), fitness and exercise general information, joint protection, nutrition and weight control, fall prevention (balance and proprioception), environmental risks, poly-pharmacy and coping negative emotions) – 2.5 h per week, during 6 weeks. 	 Disability – WOMAC; Function – TUG; Pain – VAS; QOL – SF-36; ROM – Goniometer; Strength – Dynamometer. 	 WOMA improved in the corr QOL: T 8 weeks a Role Phys OAK grou Pain: Deduring the Function Function improvem control gr Strength right and control gr between gr right legs; ROM: C compared both knee

-	^	
1	А	L

4 wee	eks of tre	atment no	signif	fican	t sta	tistica	ıl	
nces (l	P>0.05) v	were found	l betw	reen	the 1	hree	groups	in
uated	outcome	es;						
			~					

year, follow-up there were found significant statistical nees (P<0.05) between Active and Passive Mobilizations trotherapy groups in all outcomes, except in the AC stiffness and in the right and left hamstring strength 5).

AAC: Pain, Physical Function and Total scores red more significantly (P<0.05) in the OAK group than control group in 6-month follow-up; : There were improvements (P<0.05) from baseline to

s and 6 months in the SF-36 scales Physical Function, nysical, Body Pain, Vitality and Social Function in the roup compared with the control group.

Decreased either for the OAK and control group the 8-week intervention phase (P<0.001); tion: The TUG test results showed a significant rement (P<0.05) in the OAK group compared with the group postintervention and at 6 months; gth: Hamstring strength improved (P<0.05) in both nd left legs in the OAK group compared with the group at 6 months. There was no significant difference n groups in quadriceps strength in either the left or rgs;

: OAK group improved significantly (P<0.05) red with the control group the ROM in extension in nees and flexion of the left knee.

Interventions (Authors)	Objectives	Subjects	Cohorts	Outcome Measures	Results
KT		j			
Wageck et al. ⁸⁷	• To analyze the effects of KT in pain, swelling, strength, function and knee-related health status in KOA patients.	• $n_{\text{total}}=76$ Gender: 86.8% (66) female; 13.2% (10) male; • $n_{\text{Experimental}}=38$ Age: 69.6±6.9 years Height: 1.61±0.09 m Weight: 77.8±15 kg BMI: 30±4.9 kg/m ² Gender: 92% (35) female; 8% (3) male; • $n_{\text{Control}}=38$ Age: 68.6±6.3 years Height: 1.6±0.08 m Weight: 79.9±10.2 kg BMI: 31.3±4.1 kg/m ² z Gender: 82% (31) female; 18% (7) male.	 Experimental – <i>KT</i> (KT techniques to treat pain, strength and swelling) – 4 days with the tape; Control – <i>Sham KT</i> (2 KT I-shaped strips without any tension, across the quadriceps muscle group) – 4 days with the tape. 	 Function – LKSS; Pain – WOMAC and Lysholm; PPT – Knee pressure algometry; Strength – Isokinetic dynamometer; Swelling – Volumetry and perimetry. 	• There w between t the outcomperiod, or
Ayğdoğdu et al.47	• To compare KT along with conventional treatment to conventional treatment in KOA patients.	 n_{Total}=54; n_{Experimental}= 28 Age: 52.5±9.7 years Height: 1.61±0.07 m Weight: 80.8±13.1 kg BMI: 31.2±5.1 kg/m²; n_{Control}= 26 Age: 51.2±8.9 years Height: 1.6±0.08 m Weight: 80.5±14.2 kg BMI: 31.5±4.7 kg/m². 	 Experimental – Usual Treatment (Hot-packs – 20 min + US – 5min + TENS – 20 min + Exercises (stretching hamstring and quadriceps muscles and isometric and isotonic exercises for quadriceps, hip adductors, gluteus medius and maximus, open chain and closed chain exercises – 10x each exercise, during 60 min)) + KT (KT Y-shaped on the quadriceps femoris with 50-70% tension, proximal to distal + KT Y-shaped on the hamstring with 50-70% tension, proximal to distal) – 5x per week, during 3 weeks; Control – Usual Treatment (Hot-packs – 20 min + US – 5min + TENS – 20 min + Exercises (stretching hamstring and quadriceps muscles and isometric and isotonic exercises for quadriceps, hip adductors, gluteus medius and maximus, open chain and closed chain exercises – 60 min)) – 5x per week, during 3 weeks. 	 Disability – KOOS; Pain – VAS; ROM – Goniometer; Strength – Dynamometer. 	 Comparishowed si evaluated Comparisignificani outcomes P=0.097; Between perform boutcomes
Mutlu et al. 77	• To compare the effect of KT and placebo KT in KOA patients.	• $n_{\text{fotal}}=39$; Gender: 89.7% (35) female; 10.3% (3) male; • $n_{\text{Experimental}}=20$ Age: 54.3±6 years BMI: 30.2±3.8 kg/m ² Gender: 80% (16) female; 20% (4) male; • $n_{\text{Control}}=19$ Age: 57.1±6.3 years BMI: 31.3±6.2 kg/m ² Gender: 89.5% (17) female; 10.5% (2) male.	 Experimental – <i>KT</i> (KT Y-shaped on the quadriceps femoris with 25% tension, proximal to distal + KT Y-shaped on the hamstring with 25% tension, proximal to distal) – 3 to 4-day interval between each application, total duration from 12 to 16 days; Control – <i>Sham KT</i> (KT applied transverse to the muscle groups of the quadriceps and hamstring) – 3 to 4-day interval between each application, total duration from 12 to 16 days. 	 Disability – WOMAC; Function – ALF; Pain – VAS; ROM – Goniometer; Strength – Dynamometer. 	 Short-tee that KT w walking a and down significan Long-tee that KT w walking, j and night strength, j significan

Abbreviations: ALF, Aggregated Locomotor Function; ASES, Arthritis Self-Efficacy Scale; ASMP, Stanford University's Arthritis Selficacy Scale; ASMP, Stanford DHT, Deep Heating Therapy; FMV, Focal Muscle Vibration; GPE, Global Perceived Effect; h, hour; HADS, Hospital Anxiety and Depression Scale; HLLT, High-Level Laser Therapy; Hz, Hertz; IFC, Interferential Current; J, Joule; Kg, Kilogram; kHz, Kilohertz; KOA, Knee Osteoarthritis; KOOS, Knee Injury and Osteoarthritis Outcome Score; KT, Kinesio Tape®; LKSS, Lysholm Knee Scoring Scale; LLLT, Low-Level Laser Therapy; m, Meter; mA, Milliamp; MHz, Megahertz; min, Minutes; mJ, Milliamp; MHz, Megahertz; min, M Neuromuscular Electrical Stimulation; NPRS, Numeric Pain Rating Scale; NSAID, Non-steroid Anti-inflammatory Drug; OAK, Osteoarthritis of the Knee Self-Management Program; P, Significance level; PEMF, Pulsed Electromagnetic Fields; PGIG, Patient Global Impression of Change; POMA, Performance-Oriented Mobility Assessment; PPT, Pressure Pain Threshold; PSQI, Pittsburgh Sleep Quality Index; PSFL, Patient Specific Functioning List; PT, Physical Therapy; QOL, Quality of Life; QR&S39, Questionnaire Raising and Sitting Down; ROM, Range of Motion; sec, Second; SF-36, Short Form 36 Health Survey; SHT, Superficial Heating Therapy; SPPB, Short Physical Performance Battery; SWD, Shortwave Diathermy; SWD, Shortwave Diathermy; SWD, Shortwave Therapy; TENS, Transcutaneous Electrical Nerve Stimulation; TUG, Timed Up and Go; US, Ultrasound; VAS, Visual Analog Scale; W, Watts; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index; WQ35, Walking Questionnaire; YGDS, Yesavage Geriatric Depression Scale; µs, Microsecond.

217

was found no significant differences (P>0.05) en the experimental group and control group for any of comes investigated at the end of the 4-day intervention , or 15 days later.

- paring with the baseline the Usual Treatment group significant statistical differences (P≤0.019) in all ted outcomes;
- paring with the baseline the KT group showed cant statistical differences (P≤0.026) in all evaluated nes, except in the hamstring strength that showed a
- een-group analysis showed that KT group did not n better than Usual Treatment alone in the evaluated nes, since all outcomes reached a P>0.05.
- t-term (week 3) between-group comparison showed was significantly superior (P<0.05) to Sham KT at g and pain at activity and night. Pain at rest, stair up wn, transfers and WOMAC did not showed cantly statistical differences (P>0.05);
- -term (1 month) between-group comparison showed was significantly superior (P<0.05) to Sham KT at g, pain at activity and knee flexion ROM. Pain at rest ght, stair up and down, transfers, WOMAC, muscular h, knee extension and hip ROM did not show cantly statistical differences (P>0.05).